23 research outputs found

    Genomic Diversity and Introgression in O. sativa Reveal the Impact of Domestication and Breeding on the Rice Genome

    Get PDF
    The domestication of Asian rice (Oryza sativa) was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers.In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV) consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations.Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species

    Genetic Variability, Character Association, and Path Coefficient Analysis in Transplant Aman Rice Genotypes

    No full text
    A field experiment was carried out with 20 genotypes of Transplant Aman (T. Aman) rice at the Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur-1706, Bangladesh. The study was performed to evaluate the genetic deviation, trait association, and path coefficient (PC) based on grain yield (GY) and different yield-contributing agronomic characters. Variance analysis displayed extensive traits-wise variations across accessions, indicating variability and the opportunity for genetic selection for desirable traits. The high mean, range, and genotypic variances observed for most of the characters indicated a wide range of variation for these traits. All the characters indicated the minimum influence of environment on the expression of the trait and genetic factors had a significant role in the expressivity of these characters. High heritability in broad sense (h2b) and high to moderate genetic advance in percent of the mean (GAPM) were recorded for all the characters except for panicle length (PL). Based on mean, range, and all genetic parameters, the selection of all the traits except for PL would contribute to the development of T. Aman rice genotypes. A correlation study revealed that selection based on plant height (PH), number of effective tillers per hill (NET), PL, number of filled spikelets per panicle (NFS), flag leaf length (FLL), spikelet sterility (SS) percentage, and harvest index (HI) would be effective for increasing the GY of rice. Genotypic correction with grain yield (GCGY), PC and principal component analysis (PCA) revealed that direct selection of NFS, HI, SS%, and FLL would be effective for improving the GY of rice in future breeding programs
    corecore