281 research outputs found

    Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors

    Full text link
    Using first-principles electronic structure calculations we identify the anion vacancies in II-VI and chalcopyrite Cu-III-VI2 semiconductors as a class of intrinsic defects that can exhibit metastable behavior. Specifically, we predict persistent electron photoconductivity (n-type PPC) caused by the oxygen vacancy VO in n-ZnO, and persistent hole photoconductivity (p-type PPC) caused by the Se vacancy VSe in p-CuInSe2 and p-CuGaSe2. We find that VSe in the chalcopyrite materials is amphoteric having two "negative-U" like transitions, i.e. a double-donor transition e(2+/0) close to the valence band and a double-acceptor transition e(0/2-) closer to the conduction band. We introduce a classification scheme that distinguishes two types of defects (e.g., donors): type-alpha, which have a defect-localized-state (DLS) in the gap, and type-beta, which have a resonant DLS within the host bands (e.g., conduction band). In the latter case, the introduced carriers (e.g., electrons) relax to the band edge where they can occupy a perturbed-host-state (PHS). Type alpha is non-conducting, whereas type beta is conducting. We identify the neutral anion vacancy as type-alpha and the doubly positively charged vacancy as type-beta. We suggest that illumination changes the charge state of the anion vacancy and leads to a crossover between alpha- and beta-type behavior, resulting in metastability and PPC. In CuInSe2, the metastable behavior of VSe is carried over to the (VSe-VCu) complex, which we identify as the physical origin of PPC observed experimentally. We explain previous puzzling experimental results in ZnO and CuInSe2 in the light of this model.Comment: submitted to Phys. Rev.

    Defect interactions of group-I elements in cubic II-VI compounds

    Get PDF

    Defect complexes formed with Ag atoms in CDTE, ZnTe, and ZnSe

    Get PDF
    Using the radioactive acceptor 111 ⁣^{111}\!Ag for perturbed γ\gamma-γ\gamma-angular correlation (PAC) spectroscopy for the first time, defect complexes formed with Ag are investigated in the II-VI semiconductors CdTe, ZnTe and ZnSe. The donors In, Br and the Te-vacancy were found to passivate Ag acceptors in CdTe via pair formation, which was also observed in In-doped ZnTe. In undoped or Sb-doped CdTe and in undoped ZnSe, the PAC experiments indicate the compensation of Ag acceptors by the formation of double broken bond centres, which are characterised by an electric field gradient with an asymmetry parameter close to h = 1. Additionally, a very large electric field gradient was observed in CdTe, which is possibly connected with residual impurities

    The effect of extended strain fields on point defect scattering

    Get PDF
    Thermoelectric materials often require extensive tailoring of microstructure and composition to optimize their properties. Isoelectronic alloying is one of the most commonly applied techniques used to induce point defect scattering and reduce the lattice thermal conductivity. However, current approaches rely heavily on experiment and are not conducive to the high-throughput methods, which are becoming increasingly commonplace within the thermoelectric community. Herein, we present three computationally inexpensive approaches to the evaluation of point-defect scattering in thermoelectrics. These approaches also weave elements of structural chemistry associated with point defect scattering to provide a clear conceptual connection with classical phonon scattering. Computational results are further validated using bulk synthesis of SnSe and its alloys. Experimental transport measurements serve to assess model efficacy. Herein we develop and integrate three computational metrics with experimental data to find predictive metrics that can predict the relative strength of point defect scattering and associated reductions in the thermal conductivity. Ultimately, we find that all of the computational metrics are successful in predicting the relative strength of the various alloys, enabling computation to play a larger role in the screening and optimization of composition within thermoelectrics. Please click Additional Files below to see the full abstract

    Pb-apatite framework as a generator of novel flat-band CuO based physics

    Full text link
    Based on DFT calculations, we present the basic electronic structure of CuPb9(PO4)6O (Cu-doped lead apatite, LK-99), in two scenarios: (1) where the structure is constrained to the P3 symmetry and (2) where no symmetry is imposed. At the DFT level, the former is predicted to be metallic while the latter is found to be a charge-transfer insulator. In both cases the filling of these states is nominally d9, consistent with the Cu2+ valence state, and Cu with a local magnetic moment ~0.7mB. In the metallic case we find these states to be unusually flat (0.2 eV dispersion), giving high DOS at EF that we argue can be a host for novel electronic physics, including potentially high temperature superconductivity. The flatness of the bands is the likely origin of symmetry-lowering gapping possibilities that would remove the spectral weight from EF. Since some experimental observations show metallic/semiconducting behavior, we propose that disorder is responsible for closing the gap. We consider a variety of possibilities that could possibly close the gap, but limit consideration to kinds of disorder that preserve electron count. For all possibilities we considered (spin disorder, O on vacancy sites, Cu on different Pb sites), the local Cu moment, and consequently the gap remains robust. We conclude that disorder responsible for metallic behavior entails some kind of doping where the electron count changes. We claim that the emergence of the flat bands should be due to weak wave function overlap between the Cu and O orbitals, owing to the directional character of the constituent orbitals. So, finding an appropriate host structure for minimizing hybridization between Cu and O while allowing them to still weakly interact should be a promising route for generating flat bands at EF which can lead to interesting electronic phenomena, regardless of whether LK-99 is a room-temperature superconductor.Comment: 11 pages, 6 figure
    corecore