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Thermoelectrics as an Optimization Problem

+ 
Each transport phenomenon also has T 

dependence

The thermal conductivity, κ, is 
commonly targeted for optimization.

S σ κzT

Carrier Concentration
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Thermoelectrics as an Optimization Problem

Alloys as a source of point defect 
scattering

Mass contrast simple, but role of 
strain field not obvious in complex 

crystals
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Mission Statement

Can we find a way to accelerate the discovery of effective 
alloys using simple, intuitive computational models?

Model System

Classical Alloy Models

Experimental Results

Toy Models for Strain

Computational Methods

Computational Results

Ab Initio Computation

Effective Proxy?

Experiment / Modeling
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Experiment – Model System

SnSe (Pnma) + one of Sr, Ba, S, Se, Te
(e.g. Sn1-xBaxSe)

Distorted-rock salt structure 
+

Rock-salt and non rock-salt endpoints

BaSe, SrSe, SnTe: Rock-salt

SnS, GeSe: Layered Pnma (distorted-RS)
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Experiment – Model System

SnSe (Pnma) + one of Sr, Ba, S, Se, Te
(e.g. Sn1-xBaxSe)

Synthesis (e.g SnSe + SnSe2 + Ba)
+

Ball-milling and inductive hot-pressing
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Experiment – Model System

SnSe (Pnma) + one of Sr, Ba, S, Se, Te
(e.g. Sn1-xBaxSe)

X-ray Diffraction, Rietveld Refinement
+

Vegard’s Law 
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Experiment – Model System

Note large spread in the thermal 
conductivity w/alloying species.

Depressions range from slight (e.g. 
Sulfur) to severe (e.g. Ba)

Need to model to understand role 
of chemistry on scattering.

Abeles Model for Alloy Scattering .1

[1] B. Abeles, Phys. Rev., 1963, 131, 1906–1911.
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Experiment – Transport and Modeling

Red denotes beta ≥ 15 

Abeles model for composition dependent thermal conductivity

Thermal Conductivity of Alloy (κalloy) …
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Experiment – Transport and Modeling

Red denotes beta ≥ 15 

Abeles model for composition dependent thermal conductivity

Thermal Conductivity of Alloy (κalloy) …

Disorder Scaling Parameter (u) …

Net Scattering Factor (Γtot) …
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Experiment – Transport and Modeling

Red denotes beta ≥ 15 

Mass Contrast

Radii Contrast
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Experiment – Transport and Modeling

Red denotes beta ≥ 15 

Mass Contrast

Radii ContrastFree parameter
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Experiment – Transport and Modeling

Red denotes beta ≥ 15 

Mass Contrast

Radii ContrastFree parameter
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Experimental Summary

Red denotes beta ≥ 15 

Increasing Strain Contribution
+
Decreasing Thermal Conductivity
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Computational Toy Models

Red denotes beta ≥ 15 



27

Computational Methods 

Red denotes beta ≥ 15 

Approach 1: Pair-Distribution Function (Supercell)

32-atom special quasi-random structures (SQS) to mimic 25% alloy PDF’s
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Computational Methods – Pair Distribution Fn

Red denotes beta ≥ 15 

Approach 1: Pair-Distribution Function (Supercell)
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Red denotes beta ≥ 15 
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Computational Methods 

Red denotes beta ≥ 15 

Approach 2: Single Atom Distortion (Supercell)

256-atom supercell with singular atom replaced by alloying species
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Computational Methods 

Red denotes beta ≥ 15 

Approach 2: Single Atom Distortion (Supercell)

256-atom supercell with singular atom replaced by alloying species

Change in local coordination around 
species…

How far from source atom does it 
extend?

How large of a distortion?

Relation with chemistry?
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Computational Methods – Single Atom Distortion 

Red denotes beta ≥ 15 
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Red denotes beta ≥ 15 
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Computational Methods – Single Atom Distortion 

rSnSe,i

rAlloy,i

ΔSAD,i
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Computational Summary

Approach 3: Bulk Modulus (Supercell)

Standard calculation of total energy in DFT (LDA) as a function of cell volume…

Fitting of the Murnaghan equation of state to E(Ω)
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Hybridization of Experimental and Computation

Red denotes beta ≥ 15 

Do experiment and computation agree?
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Hybridization of Experimental and Computation

Red denotes beta ≥ 15 

Do experiment and computation agree?

O
n

ly
 d

et
er

m
in

ed
 b

y 
ex

p
e

ri
m

en
t

Only determined by computation

Yes! 
Computation successfully ranks relative changes in strain and transport by proxy.
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Conclusion

Presented inexpensive, conceptually transparent 
methods to visualize alloying in SnSe.

Strain effects can be observed far from host lattice site.

Computational ranking successful as proxy for 
experiment.

Possible down-selection of effective alloying agents.
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