9 research outputs found

    Pretargeted Radioimmunotherapy Using Genetically Engineered Antibody-Streptavidin Fusion Proteins for Treatment of Non-Hodgkin Lymphoma

    Get PDF
    Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, “endogenous” biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that down-modulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem

    Pretargeted radioimmunotherapy using genetically engineered antibody-streptavidin fusion proteins for treatment of non-hodgkin lymphoma.

    Get PDF
    Purpose: Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, "endogenous" biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that downmodulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem.Experimental Design: The single-chain variable region gene of the murine 1F5 anti-CD20 antibody was fused to the wild-type (WT) SAv gene and to mutant SAv genes, Y43A-SAv and S45A-SAv. FPs were expressed, purified, and compared in studies using athymic mice bearing Ramos lymphoma xenografts.Results: Biodistribution studies showed delivery of more radioactivity to tumors of mice pretargeted with mutant SAv FPs followed by (111)In-DOTA-bis-biotin [6.2 +/- 1.7% of the injected dose per gram (%ID/gm) of tumor 24 hours after Y43A-SAv FP and 5.6 +/- 2.2%ID/g with S45A-SAv FP] than in mice on normal diets pretargeted with WT-SAv FP (2.5 +/- 1.6%ID/g; P = 0.01). These superior biodistributions translated into superior antitumor efficacy in mice treated with mutant FPs and (90)Y-DOTA-bis-biotin [tumor volumes after 11 days: 237 +/- 66 mm(3) with Y43A-SAv, 543 +/- 320 mm(3) with S45A-SAv, 1129 +/- 322 mm(3) with WT-SAv, and 1435 +/- 212 mm(3) with control FP (P < 0.0001)].Conclusions: Genetically engineered mutant-SAv FPs and bis-biotin reagents provide an attractive alternative to current SAv-biotin PRIT methods in settings where endogenous biotin levels are high. Clin Cancer Res; 17(23); 7373-82. (C)2011 AACR

    A Computationally Designed Inhibitor of an Epstein-Barr Viral Bcl-2 Protein Induces Apoptosis in Infected Cells

    Get PDF
    Because apoptosis of infected cells can limit virus production and spread, some viruses have co-opted prosurvival genes from the host. This includes the Epstein-Barr virus (EBV) gene BHRF1, a homolog of human Bcl-2 proteins that block apoptosis and are associated with cancer. Computational design and experimental optimization were used to generate a novel protein called BINDI that binds BHRF1 with picomolar affinity. BINDI recognizes the hydrophobic cleft of BHRF1 in a manner similar to other Bcl-2 protein interactions but makes many additional contacts to achieve exceptional affinity and specificity. BINDI induces apoptosis in EBV-infected cancer lines, and when delivered with an antibody-targeted intracellular delivery carrier, BINDI suppressed tumor growth and extended survival in a xenograft disease model of EBV-positive human lymphoma. High-specificity-designed proteins that selectively kill target cells may provide an advantage over the toxic compounds used in current generation antibody-drug conjugates

    Bendamustine, etoposide and dexamethasone to mobilize peripheral blood hematopoietic stem cells for autologous transplantation in patients with multiple myeloma

    No full text
    Chemotherapeutic agents without cross-resistance to prior therapies may enhance peripheral blood stem cell collection and improve patient outcomes by exacting a more potent direct anti-tumor effect prior to autologous stem cell transplant. Bendamustine has broad clinical activity in transplantable lymphoid malignancies, but concern remains over the potential adverse impact of this combined alkylator-nucleoside analog on stem cell mobilization. We performed a prospective, non-randomized Phase II study including thirty-four patients with multiple myeloma (MM) (n=34; ISS stage-I[35%], II[29%] and III[24%]; not scored[13%]) to evaluate bendamustine’s efficacy and safety as a stem cell mobilizing agent. Patients received bendamustine (120 mg/m(2) IV d 1,2), etoposide(200 mg/m(2) IV d 1–3) and dexamethasone(40 mg PO d 1–4) (BED) followed by filgrastim (10 mcg/kg/d s.c.; through collection). All patients (100%) successfully collected stem cells (median of 21.60 ×10(6)/kg of body weight; range 9.24–55.5×10(6)/kg), and 88% required a single apheresis. Six non-hematologic SAEs were observed in 6 patients including: neutropenic fever (1, grade 3), bone pain (1, grade 3), and renal insufficiency (1, grade 1). In conclusion, BED safely and effectively mobilizes hematopoietic stem cells
    corecore