29,497 research outputs found

    Recent developments in Vorton Theory

    Get PDF
    This article provides a concise overview of recent theoretical results concerning the theory of vortons, which are defined to be (centrifugally supported) equilibrium configurations of (current carrying) cosmic string loops. Following a presentation of the results of work on the dynamical evolution of small circular string loops, whose minimum energy states are the simplest examples of vortons, recent order of magnitude estimates of the cosmological density of vortons produced in various kinds of theoretical scenario are briefly summarised.Comment: 6 pages Latex. Contribution to 1996 Cosmology Meeting, Peyresq, Franc

    Poly-essential and general Hyperelastic World (brane) models

    Get PDF
    This article provides a unified treatment of an extensive category of non-linear classical field models whereby the universe is represented (perhaps as a brane in a higher dimensional background) in terms of a structure of a mathematically convenient type describable as hyperelastic, for which a complete set of equations of motion is provided just by the energy-momentum conservation law. Particular cases include those of a perfect fluid in quintessential backgrounds of various kinds, as well as models of the elastic solid kind that has been proposed to account for cosmic acceleration. It is shown how an appropriately generalised Hadamard operator can be used to construct a symplectic structure that controles the evolution of small perturbations, and that provides a characteristic equation governing the propagation of weak discontinuities of diverse (extrinsic and extrinsic) kinds. The special case of a poly-essential model - the k-essential analogue of an ordinary polytropic fluid - is examined and shown to be well behaved (like the fluid) only if the pressure to density ratio ww is positive.Comment: 16 pages Latex, Contrib. to 10th Peyresq Pysics Meeting, June 2005: Micro and Macro Structures of Spacetim

    Renormalisation of gravitational self interaction for wiggly strings

    Get PDF
    It is shown that for any elastic string model with energy density UU and tension TT, the divergent contribution from gravitational self interaction can be allowed for by an action renormalisation proportional to (UT)2(U-T)^2. This formula is applied to the important special case of a bare model of the transonic type (characterised by a constant value of the product UTUT) that represents the macroscopically averaged effect of shortwavelength wiggles on an underlying microscopic model of the Nambu-Goto type (characterised by U=TU=T).Comment: 11 pages, Latex; original 8 page version extended to include estimates of relevant orders of magnitude. To be published in Physical Review,

    Quantum Algorithm for the Collision Problem

    Get PDF
    In this note, we give a quantum algorithm that finds collisions in arbitrary r-to-one functions after only O((N/r)^(1/3)) expected evaluations of the function. Assuming the function is given by a black box, this is more efficient than the best possible classical algorithm, even allowing probabilism. We also give a similar algorithm for finding claws in pairs of functions. Furthermore, we exhibit a space-time tradeoff for our technique. Our approach uses Grover's quantum searching algorithm in a novel way.Comment: 8 pages, LaTeX2

    Corrections to the Nuclear Axial Vector Coupling in a Nuclear Medium

    Full text link
    We examine further corrections to the time component of the axial vector coupling constant in a nuclear medium. The dominant correction is that of exchange currents. The corrections we examine make the remaining discrepancy worse.Comment: 6 pages, 2 figure

    Quasiequilibrium black hole-neutron star binaries in general relativity

    Get PDF
    We construct quasiequilibrium sequences of black hole-neutron star binaries in general relativity. We solve Einstein's constraint equations in the conformal thin-sandwich formalism, subject to black hole boundary conditions imposed on the surface of an excised sphere, together with the relativistic equations of hydrostatic equilibrium. In contrast to our previous calculations we adopt a flat spatial background geometry and do not assume extreme mass ratios. We adopt a Gamma=2 polytropic equation of state and focus on irrotational neutron star configurations as well as approximately nonspinning black holes. We present numerical results for ratios of the black hole's irreducible mass to the neutron star's ADM mass in isolation of M_{irr}^{BH}/M_{ADM,0}^{NS} = 1, 2, 3, 5, and 10. We consider neutron stars of baryon rest mass M_B^{NS}/M_B^{max} = 83% and 56%, where M_B^{max} is the maximum allowed rest mass of a spherical star in isolation for our equation of state. For these sequences, we locate the onset of tidal disruption and, in cases with sufficiently large mass ratios and neutron star compactions, the innermost stable circular orbit. We compare with previous results for black hole-neutron star binaries and find excellent agreement with third-order post-Newtonian results, especially for large binary separations. We also use our results to estimate the energy spectrum of the outgoing gravitational radiation emitted during the inspiral phase for these binaries.Comment: 17 pages, 15 figures, published in Phys. Rev.

    New magnetic phase in metallic V_{2-y}O_3 close to the metal insulator transition

    Full text link
    We have observed two spin density wave (SDW) phases in hole doped metallic V_{2-y}O_3, one evolves from the other as a function of doping, pressure or temperature. They differ in their response to an external magnetic field, which can also induce a transition between them. The phase boundary between these two states in the temperature-, doping-, and pressure-dependent phase diagram has been determined by magnetization and magnetotransport measurements. One phase exists at high doping level and has already been described in the literature. The second phase is found in a small parameter range close to the boundary to the antiferromagnetic insulating phase (AFI). The quantum phase transitions between these states as a function of pressure and doping and the respective metamagnetic behavior observed in these phases are discussed in the light of structurally induced changes of the band structure.Comment: REVTeX, 8 pages, 12 EPS figures, submitted to PR

    Quasinormal modes of black holes localized on the Randall-Sundrum 2-brane

    Full text link
    We investigate conformal scalar, electromagnetic, and massless Dirac quasinormal modes of a brane-localized black hole. The background solution is the four-dimensional black hole on a 2-brane that has been constructed by Emparan, Horowitz, and Myers in the context of a lower dimensional version of the Randall-Sundrum model. The conformally transformed metric admits a Killing tensor, allowing us to obtain separable field equations. We find that the radial equations take the same form as in the four-dimensional "braneless" Schwarzschild black hole. The angular equations are, however, different from the standard ones, leading to a different prediction for quasinormal frequencies.Comment: 10 pages, 7 figures; references added, version to appear in PR

    77^{77}Se and 63^{63}Cu NMR studies of the electronic correlations in Cux_xTiSe2_2 (x=0.05,0.07x=0.05, 0.07)

    Full text link
    We report 77^{77}Se and 63^{63}Cu nuclear magnetic resonance (NMR) investigation on the charge-density-wave (CDW) superconductor Cux_xTiSe2_2 (x=0.05x=0.05 and 0.07). At high magnetic fields where superconductivity is suppressed, the temperature dependence of 77^{77}Se and 63^{63}Cu spin-lattice relaxation rates 1/T_{1}followalinearrelation.Theslopeof follow a linear relation. The slope of ^{77}1/T_{1}$ vs \emph{T} increases with the Cu doping. This can be described by a modified Korringa relation which suggests the significance of electronic correlations and the Se 4\emph{p}- and Ti 3\emph{d}-band contribution to the density of states at the Fermi level in the studied compounds.Comment: Revised manuscript. Submitted to Journal of Physics: Condensed Matte

    Symplectic structure for elastic and chiral conducting cosmic string models

    Full text link
    This article is based on the covariant canonical formalism and corresponding symplectic structure on phase space developed by Witten, Zuckerman and others in the context of field theory. After recalling the basic principles of this procedure, we construct the conserved bilinear symplectic current for generic elastic string models. These models describe current carrying cosmic strings evolving in an arbitrary curved background spacetime. Particular attention is paid to the special case of the chiral string for which the worldsheet current is null. Different formulations of the chiral string action are discussed in detail, and as a result the integrability property of the chiral string is clarified.Comment: 18 page
    corecore