305 research outputs found

    Digital chest radiography: an update on modern technology, dose containment and control of image quality

    Get PDF
    The introduction of digital radiography not only has revolutionized communication between radiologists and clinicians, but also has improved image quality and allowed for further reduction of patient exposure. However, digital radiography also poses risks, such as unnoticed increases in patient dose and suboptimum image processing that may lead to suppression of diagnostic information. Advanced processing techniques, such as temporal subtraction, dual-energy subtraction and computer-aided detection (CAD) will play an increasing role in the future and are all targeted to decrease the influence of distracting anatomic background structures and to ease the detection of focal and subtle lesions. This review summarizes the most recent technical developments with regard to new detector techniques, options for dose reduction and optimized image processing. It explains the meaning of the exposure indicator or the dose reference level as tools for the radiologist to control the dose. It also provides an overview over the multitude of studies conducted in recent years to evaluate the options of these new developments to realize the principle of ALARA. The focus of the review is hereby on adult applications, the relationship between dose and image quality and the differences between the various detector systems

    Effect of dose reduction on image quality and diagnostic performance in coronary computed tomography angiography

    Get PDF
    To evaluate the effect of radiation dose reduction on image quality and diagnostic accuracy of coronary computed tomography (CT) angiography. Coronary CT angiography studies of 40 patients with (n = 20) and without (n = 20) significant (≥50 %) stenosis were included (26 male, 14 female, 57 ± 11 years). In addition to the original clinical reconstruction (100 % dose), simulated images were created that correspond to 50, 25 and 12.5 % of the original dose. Image quality and diagnostic performance in identifying significant stenosis were determined. Receiver–operator-characteristics analysis was used to assess diagnostic accuracy at different dose levels. The identification of patients with significant stenosis decreased consistently at doses of 50, 25 and 12.5 of the regular clinical acquisition (100 %). The effect was relatively weak at 50 % dose, and was strong at dose levels of 25 and 12.5 %. At lower doses a steady increase was observed for false negative findings. The number of coronary artery segments that were rated as diagnostic decreased gradually with dose, this was most prominent for smaller segments. The area-under-the-curve (AUC) was 0.90 (p = 0.4) at 50 % dose; accuracy decreased significantly with 25 % (AUC 0.70) and 12.5 % dose (AUC 0.60) (p < 0.0001), with underestimation of patients having significant stenosis. The clinical acquisition protocol for evaluation of coronary artery stenosis with CT angiography represents a good balance between image quality and patient dose. A potential for a modest (<50 %) reduction of tube current might exist. However, more substantial reduction of tube current will reduce diagnostic performance of coronary CT angiography substantially

    Atrial function in Fontan patients assessed by CMR: Relation with exercise capacity and long-term outcomes

    Get PDF
    Objective: To assess the role of atrial function on exercise capacity and clinical events in Fontan patients. Design: We included 96 Fontan patients from 6 tertiary centers, aged 12.8 (IQR 10.1–15.6) years, who underwent cardiac magnetic resonance imaging and cardiopulmonary exercise testing within 12 months of each other from 2004 to 2017. Intra-atrial lateral tunnel (ILT) and extracardiac conduit (ECC) patients were matched 1:1 with regard to age, gender and dominant ventricle. The pulmonary venous atrium was manually segmented in all phases and slices. Atrial function was assessed by volume-time curves. Furthermore, atrial longitudinal and circumferential feature tracking strain was assessed. We determined the relation between atrial function and exercise capacity, assessed by peak oxygen uptake and VE/VCO2 slope, and events (mortality, listing for transplant, re-intervention, arrhythmia) during follow-up. Results: Atrial maximal and minimal volumes did not differ between ILT and ECC patients. ECC patients had higher reservoir function (21.1 [16.4–28.0]% vs 18.2 [10.9–22.2]%, p = .03), lower conduit function and lower total circumferential strain (13.8 ± 5.1% vs 18.0 ± 8.7%, p = .01), compared to ILT patients. Only for ECC patients, a better late peak circumferential strain rate predicted better VE/VCO2 slope. No other parameter of atrial function predicted peak oxygen uptake or VE/VCO2 slope. During a median follow-up of 6.2 years,

    Cerebral Perfusion and Aortic Stiffness Are Independent Predictors of White Matter Brain Atrophy in Type 1 Diabetic Patients Assessed With Magnetic Resonance Imaging

    Get PDF
    OBJECTIVE-To identify vascular mechanisms of brain atrophy in type 1 diabetes mellitus (DM) patients by investigating the relationship between brain volumes and cerebral perfusion and aortic stiffness using magnetic resonance imaging (MRI). RESEARCH DESIGN AND METHODS-Approval from the local institutional review board was obtained, and patients gave informed consent. Fifty-one type 1 DM patients (30 men; mean age 44 +/- 11 years; mean DM duration 23 +/- 12 years) and 34 age- and sex-matched healthy control subjects were prospectively enrolled. Exclusion criteria comprised hypertension, stroke, aortic disease, and standard MRI contraindications. White matter (WM) and gray matter (GM) brain volumes, total cerebral blood flow (tCBF), total brain perfusion, and aortic pulse wave velocity (PWV) were assessed using MRI. Multivariable linear regression analysis was used for statistics, with covariates age, sex, mean arterial pressure, BMI, smoking, heart rate, DM duration, and HbA(1c). RESULTS-Both WM and GM brain volumes were decreased in type 1 DM patients compared with control subjects (WM P = 0.04; respective GM P = 0.03). Total brain perfusion was increased in type 1 DM compared with control subjects (beta = -0.219, P < 0.05). Total CBF and aortic PWV predicted WM brain volume (beta = 0.352, P = 0.024 for tCBF; respective beta = 0.458, P = 0.016 for aortic PWV) in type 1 DM. Age was the independent predictor of GM brain volume (beta = -0.695, P < 0.001). CONCLUSIONS-Type 1 DM patients without hypertension showed WM and GM volume loss compared with control subjects concomitant with a relative increased brain perfusion. Total CBF and stiffness of the aorta independently predicted WM brain atrophy in type 1 DM. Only age predicted GM brain atrophy.Cardiovascular Aspects of Radiolog
    corecore