427 research outputs found
Pharmacological development of target-specific delocalized lipophilic cation-functionalized carboranes for cancer therapy
PURPOSE:
Tumor cell heterogeneity and microenvironment represent major hindering factors in the clinical setting toward achieving the desired selectivity and specificity to malignant tissues for molecularly targeted cancer therapeutics. In this study, the cellular and molecular evaluation of several delocalized lipophilic cation (DLC)-functionalized carborane compounds as innovative anticancer agents is presented.
METHODS:
The anticancer potential assessment of the DLC-carboranes was performed in established normal (MRC-5, Vero), cancer (U-87 MG, HSC-3) and primary glioblastoma cancer stem (EGFRpos, EGFRneg) cultures. Moreover, the molecular mechanism of action underlying their pharmacological response is also analyzed.
RESULTS:
The pharmacological anticancer profile of DLC-functionalized carboranes is characterized by: a) a marked in vitro selectivity, due to lower concentration range needed (ca. 10 fold) to exert their cell growth-arrest effect on U-87 MG and HSC-3, as compared with that on MRC-5 and Vero; b) a similar selective growth inhibition behavior towards EGFRpos and EGFRneg cultures (>10 fold difference in potency) without, however, the activation of apoptosis in cultures; c) notably, in marked contrast to cancer cells, normal cells are capable of recapitulating their full proliferation potential following exposure to DLC-carboranes; and, d) such pharmacological effects of DLC-carboranes has been unveiled to be elicited at the molecular level through activation of the p53/p21 axis.
CONCLUSIONS:
Overall, the data presented in this work indicates the potential of the DLC-functionalized carboranes to act as new selective anticancer therapeutics that may be used autonomously or in therapies involving radiation with thermal neutrons. Importantly, such bifunctional capacity may be beneficial in cancer therapy
Tumour Cell Heterogeneity.
The population of cells that make up a cancer are manifestly heterogeneous at the genetic, epigenetic, and phenotypic levels. In this mini-review, we summarise the extent of intra-tumour heterogeneity (ITH) across human malignancies, review the mechanisms that are responsible for generating and maintaining ITH, and discuss the ramifications and opportunities that ITH presents for cancer prognostication and treatment
The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress.
The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells
Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy
How chemotherapy affects carcinoma genomes is largely unknown. Here we report whole-exome and deep sequencing of 30 paired oesophageal adenocarcinomas sampled before and after neo-adjuvant chemotherapy. Most, but not all, good responders pass through genetic bottlenecks, a feature associated with higher mutation burden pre-treatment. Some poor responders pass through bottlenecks, but re-grow by the time of surgical resection, suggesting a missed therapeutic opportunity. Cancers often show major changes in driver mutation presence or frequency after treatment, owing to outgrowth persistence or loss of sub-clones, copy number changes, polyclonality and/or spatial genetic heterogeneity. Post-therapy mutation spectrum shifts are also common, particularly C>A and TT>CT changes in good responders or bottleneckers. Post-treatment samples may also acquire mutations in known cancer driver genes (for example, SF3B1, TAF1 and CCND2) that are absent from the paired pre-treatment sample. Neo-adjuvant chemotherapy can rapidly and profoundly affect the oesophageal adenocarcinoma genome. Monitoring molecular changes during treatment may be clinically useful
- …