12 research outputs found

    Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance

    Full text link
    We investigate the properties of kappa-Minkowski spacetime by using representations of the corresponding deformed algebra in terms of undeformed Heisenberg-Weyl algebra. The deformed algebra consists of kappa-Poincare algebra extended with the generators of the deformed Weyl algebra. The part of deformed algebra, generated by rotation, boost and momentum generators, is described by the Hopf algebra structure. The approach used in our considerations is completely Lorentz covariant. We further use an adventages of this approach to consistently construct a star product which has a property that under integration sign it can be replaced by a standard pointwise multiplication, a property that was since known to hold for Moyal, but not also for kappa-Minkowski spacetime. This star product also has generalized trace and cyclic properties and the construction alone is accomplished by considering a classical Dirac operator representation of deformed algebra and by requiring it to be hermitian. We find that the obtained star product is not translationally invariant, leading to a conclusion that the classical Dirac operator representation is the one where translation invariance cannot simultaneously be implemented along with hermiticity. However, due to the integral property satisfied by the star product, noncommutative free scalar field theory does not have a problem with translation symmetry breaking and can be shown to reduce to an ordinary free scalar field theory without nonlocal features and tachionic modes and basicaly of the very same form. The issue of Lorentz invariance of the theory is also discussed.Comment: 22 pages, no figures, revtex4, in new version comments regarding translation invariance and few references are added, accepted for publication in Int. J. Mod. Phys.

    Kappa-deformed Snyder spacetime

    Full text link
    We present Lie-algebraic deformations of Minkowski space with undeformed Poincare algebra. These deformations interpolate between Snyder and kappa-Minkowski space. We find realizations of noncommutative coordinates in terms of commutative coordinates and derivatives. Deformed Leibniz rule, the coproduct structure and star product are found. Special cases, particularly Snyder and kappa-Minkowski in Maggiore-type realizations are discussed. Our construction leads to a new class of deformed special relativity theories.Comment: 12 pages, no figures, LaTeX2e class file, accepted for publication in Modern Physics Letters

    Scalar field propagation in the phi^4 kappa-Minkowski model

    Full text link
    In this article we use the noncommutative (NC) kappa-Minkowski phi^4 model based on the kappa-deformed star product, ({*}_h). The action is modified by expanding up to linear order in the kappa-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the kappa-Minkowski is specifically kappa-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the kappa-deformed Minkowski spacetime, resulting in a kappa-effective model. The propagation is analyzed in the framework of the two-point Green's function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the kappa-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planckian energies we obtain the direction dependent kappa-modified dispersion relations. Thus our kappa-effective model for the massive scalar field shows a birefringence effect.Comment: 23 pages, 2 figures; To be published in JHEP. Minor typos corrected. Shorter version of the paper arXiv:1107.236

    Triangular quasi-Hopf algebra structures on certain non-semisimple quantum groups

    Get PDF
    One way to obtain Quantized Universal Enveloping Algebras (QUEAs) of non-semisimple Lie algebras is by contracting QUEAs of semisimple Lie algebras. We prove that every contracted QUEA in a certain class is a cochain twist of the corresponding undeformed universal envelope. Consequently, these contracted QUEAs possess a triangular quasi-Hopf algebra structure. As examples, we consider kappa-Poincare in 3 and 4 spacetime dimensions.Comment: 32 page

    Kappa-deformation of phase space; generalized Poincare algebras and R-matrix

    Full text link
    We deform Heisenberg algebra and corresponding coalgebra by twist. We present undeformed and deformed tensor identities. Coalgebras for the generalized Poincar\'{e} algebras have been constructed. The exact universal RR-matrix for the deformed Heisenberg (co)algebra is found. We show, up to the third order in the deformation parameter, that in the case of κ\kappa-Poincar\'{e} Hopf algebra this RR-matrix can be expressed in terms of Poincar\'{e} generators only. This implies that the states of any number of identical particles can be defined in a κ\kappa-covariant way.Comment: 10 pages, revtex4; discussion enlarged, references adde
    corecore