
ar
X

iv
:0

81
2.

32
57

v1
  [

m
at

h.
Q

A
] 

 1
7 

D
ec

 2
00

8

DCPT-08/73

Triangular quasi-Hopf algebra structures

on certain non-semisimple quantum groups

C. A. S. Young1 and R. Zegers2

Department of Mathematical Sciences

University of Durham

South Road, Durham DH1 3LE, UK

ABSTRACT

One way to obtain Quantized Universal Enveloping Algebras (QUEAs) of
non-semisimple Lie algebras is by contracting QUEAs of semisimple Lie alge-
bras. We prove that every contracted QUEA in a certain class is a cochain
twist of the corresponding undeformed universal envelope. Consequently,
these contracted QUEAs possess a triangular quasi-Hopf algebra structure.
As examples, we consider κ-Poincaré in 3 and 4 spacetime dimensions.
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1 Introduction

The class of quasi-triangular quasi-Hopf (qtqH) algebras, introduced by Drinfel’d [1],

admits an extended notion of twisting in which the 2-cocycle condition required in the

context of Hopf algebras is relaxed, [2, 3]. It is therefore possible to relate, by twisting,

Hopf algebras – with coassociative coproduct – to quasi-Hopf algebras which may only be

coassociative up to conjugation by an invertible element Φ known as the coassociator. A

remarkable fact, proved in [1], is that every qtqH quantized universal enveloping algebra

(QUEA) is isomorphic to a twist of the undeformed UEA of the underlying Lie algebra; the

latter being endowed with a canonical qtqH algebra structure (RKZ,ΦKZ), obtained from

the monodromy of the Knizhnik-Zamolodchikov equation. In particular, the Drinfel’d-

Jimbo QUEA of any semisimple Lie algebra, endowed with its standard quasi-triangular

Hopf algebra structure, can be obtained in this way by means of an appropriate twist FD.

As a corollary, every such QUEA also admits a triangular quasi-Hopf algebra structure,

obtained by twisting (R0 = 1⊗ 1,Φ0 = 1⊗ 1⊗ 1) with the same canonical twist FD. This

structure provides the isomorphisms required to make the category of representations a

tensor category. As emphasized in [4] – see also [5,6] – apart from the obvious mathemat-

ical interest, the extension of this result to non-semisimple Lie algebras would provide a

covariant notion of multiparticle states in quantum field theories based on certain defor-

mations of the Poincaré symmetry. Unfortunately, the proof of this result relies crucially

on the vanishing of a certain cohomology module, which holds for semisimple Lie algebras

but may fail for non-semisimple Lie algebras. This precludes any systematic extension to

the latter and, to our knowledge, the question of the existence of a qtqH algebra structure

(triangular or not) on a general non-semisimple QUEA remains open.

There is a class of non-semisimple Lie algebras that is nonetheless closely related to

semisimple Lie algebras. It consists of all the Lie algebras obtained by contracting semisim-

ple Lie algebras. As we shall discuss, given a symmetric decomposition g = h ⊕ p of the

semisimple Lie algebra g, an Inönu-Wigner contraction of g can be performed by rescaling

the submodule p with respect to the subalgebra h and taking a singular limit. In the

limit, the submodule p is contracted to an abelian ideal of the contraction g0 of g, thus

making g0 non-semisimple. Whenever the contraction procedure is non-singular at the

level of the QUEA, this yields a complete QUEA structure (Uκ(g0),∆κ) based on the non-

semisimple Lie algebra g0, where κ is a rescaled deformation parameter. In this paper, we

consider a certain class of QUEAs obtained in this way. We prove that every such QUEA

is isomorphic to a twist of the corresponding undeformed UEA by an invertible element

F0 ∈ Uκ(g0)⊗Uκ(g0) obtained as the contraction of the canonical twist FD of g. By twist-
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ing the trivial triangular quasi-Hopf algebra structure with F0, we prove the existence of a

triangular quasi-Hopf algebra structure (Rκ,Φκ) on the non-semisimple QUEA (Uκg0,∆κ).

That is, we prove the existence of the bottom line of the following diagram.

(Ug,∆0,RKZ,ΦKZ)
FD

// (Uqg,∆q,Rq, 1
⊗3)

(Ug,∆0, 1
⊗2, 1⊗3)

Contraction
��

FD
// (Uqg,∆q,R,Φ)

��

(U(g0),∆0, 1
⊗2, 1⊗3)

F0
// (Uκ(g0),∆κ,Rκ,Φκ)

The paper is organised as follows. In section 2, we recall the definition of symmetric

semisimple Lie algebras. The important notion of contractibility is introduced in section

3 after a brief reminder of the definitions of the filtered and graded algebras associated to

UEAs. We also define the class of symmetric spaces to which our results will apply, namely

those possessing what we shall call the restriction property. Section 4 is dedicated to the

cohomology of associative algebras and Lie algebras. After a brief account of Hochschild

and Chevalley-Eilenberg cohomology, we introduce the notion of contractible Chevalley-

Eilenberg cohomology. We establish, in particular, the vanishing of the first contractible

Chevalley-Eilenberg cohomology module for symmetric semisimple Lie algebras possessing

the restriction property. This will be crucial in proving the existence of a contractible twist.

In section 5, the usual rigidity theorems for semisimple Lie algebras are then refined, with

special regards to the contractibility of the structures. We construct, in particular, a

contractible twist from every contractible QUEA of restrictive type to the undeformed

UEA of the underlying Lie algebra. The actual contraction is performed in section 6.

Section 7 contains the examples that form the main motivation for the present work,

namely the κ-deformations of U(iso(3,C)) and U(iso(4,C)), whose real forms give rise to

the κ-deformations of the Euclidean and Poincaré algebras in three and four dimensions,

[7,8]. The latter has indeed received considerable interest as a possible deformation of the

Poincaré symmetries of space-time – see e.g. [9] and references therein.

Throughout this paper K denotes a field of characteristic zero.

2 Symmetric decompositions of Lie algebras

Let us briefly review some well-known facts concerning symmetric semisimple Lie algebras.

Following [10, 11], we have
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Definition 2.1 A symmetric Lie algebra is a pair (g, θ), where g is a Lie algebra and

θ : g → g is an involutive (i.e. θ ◦ θ = id and θ 6= id) automorphism of Lie algebras.

As θ ◦ θ = id, the eigenvalues of θ are +1 and −1. Let h = ker (θ − id) and p = ker (θ + id)

be the corresponding eigenspaces. Every such θ thus defines a symmetric decomposition of

g, i.e. a triple (g, h, p) such that

• h ⊂ g is a Lie subalgebra;

• g = h ⊕ p as K-modules;

• [h, p] ⊆ p and [p, p] ⊆ h.

Any Lie subalgebra h of g that is the fixed point set of some involutive automorphism will

be referred to as a symmetrizing subalgebra. If, in addition, g is semisimple then p must

be the orthogonal complement of h in g with respect to the (non-degenerate) Killing form,

and thus every given symmetrizing subalgebra h uniquely determines p and hence θ. In

this case, we shall refer to (g, h) as a symmetric pair.

A symmetric semisimple Lie algebra (g, θ) is said to be diagonal if g = v ⊕ v for some

semisimple Lie algebra v and θ(x, y) = (y, x) for all (x, y) ∈ g. A symmetric Lie algebra

splits into symmetric subalgebras (gi, θi)i∈I if g =
⊕

i∈I gi and the restrictions θ|gi
= θi for

all i ∈ I.

Lemma 2.2 Every symmetric semisimple Lie algebra (g, θ) splits into a diagonal symmet-

ric Lie algebra (gd, θd) and a collection of symmetric simple Lie subalgebras (gi, θi)i∈I .

A proof can be found in Chap. 8 of [11]. Lemma 2.2 allows for a complete classification

of the symmetric semisimple Lie algebras; see [11, 12]. It also follows that we have the

following

Lemma 2.3 Let (g, θ) be a symmetric semisimple Lie algebra and let g = h ⊕ p be the

associated symmetric decomposition of g. Then h is linearly generated by [p, p].

Proof. By virtue of lemma 2.2, it suffices to prove this result on symmetric simple Lie

algebras and on diagonal symmetric Lie algebras. Let us first assume that g is simple.

The linear span of [p, p] defines a non-trivial ideal in h and span([p, p]) ⊕ p therefore

defines a non-trivial ideal in g. If we assume that g is simple, it immediately follows that

span([p, p]) = h. Suppose now that (g, θ) is a diagonal symmetric Lie algebra, i.e. that

there exists a semisimple Lie algebra v such that g = v ⊕ v and θ(x, y) = (y, x) for all
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(x, y) ∈ g. In this case, we have a symmetric decomposition g = h ⊕ p, where h is the set

of elements of the form (x, x) for all x ∈ v, whereas p is the set of elements of the form

(x,−x) for all x ∈ v. We naturally have [p, p] ⊆ h. Now, as v is semisimple, it follows that

for every x ∈ v, there exist y, z ∈ v such that x = [y, z]. Then for all (x, x) ∈ h, we have

(x, x) = ([y, z], [y, z]) = [(y, y), (z, z)] = [(y,−y), (z,−z)]. But both (y,−y) and (z,−z) are

in p.

3 Contractible QUEAs

3.1 Filtrations of the Universal Enveloping Algebra

Given a Lie algebra g over K, its universal enveloping algebra Ug is defined as the quotient

of the graded tensor algebra Tg =
⊕

n≥0 g⊗n by the two-sided ideal I(g) generated by the

elements of the form x ⊗ y − y ⊗ x − [x, y], for all x, y ∈ g. This quotient constitutes a

filtered K-algebra, i.e. there exists an increasing sequence

{0} ⊂ F0(Ug) ⊂ · · · ⊂ Fn(Ug) ⊂ · · · ⊂ Ug , (3.1)

such that 3

Ug =
⋃

n≥0

Fn(Ug) and Fn(Ug) · Fm(Ug) ⊂ Fn+m(Ug) . (3.2)

The elements of this sequence are, for all n ∈ N0,

Fn(Ug) =
n⊕

m=0

g⊗m/I(g) . (3.3)

In particular, F0(Ug) = K and F1(Ug) = K ⊕ g. Let us identify g with its image under

the canonical inclusion g →֒ U(g), and further write x1 · · ·xn for the equivalence class of

x1⊗· · ·⊗xn. In this notation, Fn(Ug) is linearly generated by elements that can be written

as words composed of at most n symbols from g.

We define the left action of g on g⊗n by extending the adjoint action x ⊲ x′ = [x, x′] of

g on g as a derivation:

x ⊲ (x1 ⊗ · · · ⊗ xn) =
n∑

i=1

x1 ⊗ · · · ⊗ [x, xi] ⊗ · · · ⊗ xn ∈ g⊗n , (3.4)

3Although Fn(Ug) · Fm(Ug) is usually strictly contained in Fn+m(Ug), it linearly generates the latter.
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for all x, x1, . . . , xn ∈ g. In this way we endow Tg with the structure of a left g-module. As

the ideal I(g) is stable under this action, the Fn(Ug) are also left g-modules. We therefore

have a filtration of Ug not only as a K-algebra, but also as a left g-module.

We will also need such a filtration on (Ug)⊗2. In fact, for all m ∈ N0, there is a

K-algebra filtration on the universal envelope U(g⊕m) of the Lie algebra g⊕m, as defined

above. If we endow g⊕m with the structure of a left g-module according to

x ⊲ (x1, . . . , xm) := ([x, x1] , . . . , [x, xm]) , (3.5)

and extend this action to all of U(g⊕m) as a derivation, then we have a filtration of U(g⊕m)

as a left g-module. But there is a natural isomorphism

ρm : U(g⊕m)
∼

−→ (Ug)⊗m (3.6)

of K-algebras (see e.g. [10] section 2.2). This induces a left action of g on (Ug)⊗m and

a filtration of (Ug)⊗m as a left g-module. We write the elements of this filtration as

Fn

(
(Ug)⊗m).

Given now any symmetric decomposition

g = h ⊕ p, (3.7)

there is an associated bifiltration (Fn,m(Ug))n,m∈N0
of Ug, i.e. a doubly increasing sequence

Fn,m(Ug) ⊂ Fn+1,m(Ug) and Fn,m(Ug) ⊂ Fn,m+1(Ug) , (3.8)

such that

Ug =
⋃

n,m≥0

Fn,m(Ug) and Fn,m(Ug) · Fk,l(Ug) ⊂ Fn+k,m+l(Ug) , (3.9)

for all n,m, k, l ∈ N0. The elements of this sequence are, for all n,m ∈ N0,

Fn,m(Ug) =

n⊕

p=0

m⊕

q=0

Sym
(
h⊗p ⊗ p⊗q

)
/I(g) , (3.10)

where, for all n ∈ N0 and all K-submodules X1, . . .Xn ⊂ g,

Sym(X1 ⊗ · · · ⊗Xn) =
⊕

σ∈Σn

Xσ(1) ⊗ · · · ⊗Xσ(n) (3.11)

is the direct sum over all permutations of submodules in the tensor product. Each Fn,m(Ug)

is therefore the left h-module linearly generated by elements of Ug that can be written as
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words containing at most n symbols in h and at most m symbols in p. In particular,

F1,0(Ug) = K ⊕ h and F0,1(Ug) = K ⊕ p. We also have, for all m,n ∈ N0,

Fn,m(Ug) ⊂ Fn+m(Ug) and Fn(Ug) =
n⋃

m=0

Fn−m,m(Ug) . (3.12)

In complete analogy with the Fn((Ug)⊗m), we can construct bifiltrations Fn,p((Ug)⊗m) of

all the m-fold tensor products of Ug.

3.2 Symmetric tensors

Let S(g) be the graded algebra associated to the filtration of U(g) by setting, for all n ∈ N0,

Sn(g) = Fn(Ug)/Fn−1(Ug) and S(g) =
⊕

n≥0

Sn(g) . (3.13)

Since the Fn(Ug) are left g-modules, so are the Sn(g). The symmetrization map, sym :

S(g) → Ug, defined by

sym(x1 · · ·xn) =
1

n!

∑

σ∈Sn

xσ(1) · · ·xσ(n) (3.14)

for all n ∈ N0 and all x1, . . . , xn ∈ g, constitutes an isomorphism of left g-modules 4. The

image of a given Sn(g) through sym is the g-module of symmetric tensors in g⊗n.

If now g = h ⊕ p is a symmetric decomposition, let

Sm,n(g) = Fm,n(Ug)/Fm+n−1(Ug) , (3.15)

for all m,n ∈ N0. These obviously constitute left h-modules. As such, they are isomorphic

to the left h-modules of symmetric tensors in the Sym (h⊗m ⊗ p⊗n), which are linearly

generated by totally symmetric words with exactly m symbols in h and exactly n symbols

in p. Note that these h-modules are mixed under the left p-action. Indeed, let m,n ∈ N0

be two non-negative integers and let x ∈ Sm,n(g). We have:

• if m > 0 and n = 0, then p ⊲ x ∈ Sm−1,n+1(g);

• if m > 0 and n > 0, then p ⊲ x ∈ Sm+1,n−1(g) ⊕ Sm−1,n+1(g);

• if m = 0 and n > 0, then p ⊲ x ∈ Sm+1,n−1(g).

4Recall that we assume K has characteristic zero.
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This is better represented by the following diagram in Sm+n(g).

· · ·
p⊲

%%K
K

K
K

K
K Sm+1,n−1(g)

p⊲
yys

s
s

s
s

s
p⊲

&&N
N

N
N

N
N

h⊲
��

Sm,n(g)

p⊲
xxp

p
p

p
p

p
p⊲

&&N
N

N
N

N
N

h⊲
��

Sm−1,n+1(g)

p⊲
xxp

p
p

p
p

p
p⊲

''P
P

P
P

P
P

h⊲
��

Sm−2,n+2(g)

p⊲
wwn

n
n

n
n

n

h⊲
��

p⊲

%%K
K

K
K

K
K

· · ·

p⊲
yys

s
s

s
s

s

· · · Sm+1,n−1(g) Sm,n(g) Sm−1,n+1(g) Sm−2,n+2(g) · · ·

Using the action (3.5) of g on g⊕m we have entirely analogous structures for g⊕m with

Sn,p(g
⊕m) = Fn,p(U(g⊕m))/Fn+p−1(U(g⊕m)) . (3.16)

In view of (3.6), it follows that

Sn,p(g
⊕m) ∼= Fn,p

(
(Ug)⊗m)

)
/Fn+p−1

(
(Ug)⊗m)

)
(3.17)

for all n, p ∈ N0. We shall therefore identify each Sn,p(g
⊕m) with the left h-module of

symmetric tensors on (Ug)⊗m containing exactly n factors in h and p in p.

3.3 Symmetric invariants and the restriction property

For all n, p ∈ N0, let Sn(g ⊕ g)g be the set of g-invariant elements of the left g-module

Sn(g ⊕ g) and let Sn,p(g ⊕ g)h denote the set of h-invariant elements of the left h-module

Sn,p(g ⊕ g). We have the following two lemmas.

Lemma 3.1 Let n and p be positive integers. Every x ∈ Sn−p,p(g ⊕ g)h such that p ⊲ x ∈

Sn−p+1,p−1(g ⊕ g) is in the linear span of Sn−p,0(g ⊕ g)gS0,p(g ⊕ g)h.

Proof. Let (hi)i∈I and (pj)j∈J be ordered bases of h ⊕ h and p ⊕ p respectively. Every

element x ∈ Sn−p,p(g ⊕ g) can be written as

x =
∑

i1≤···≤in−p

∑

j1≤···≤jp

xi1...in−pj1...jp
hi1 . . . hin−p

pj1 . . . pjp
,

where, for all i1, . . . , in−p ∈ I and j1, . . . , jp ∈ J , xi1...in−pj1...jp
∈ K. Then, omitting the

ordered sums, we have

p ⊲ x = xi1...in−pj1...jp

[
p ⊲
(
hi1 . . . hin−p

)
pj1 . . . pjp

+ hi1 . . . hin−p
p ⊲
(
pj1 . . . pjp

)]
.

Since (p ⊲ x) ∩ Sn−p−1,p+1(g ⊕ g) = {0}, we have

p ⊲
(
xi1...in−pj1...jp

hi1 . . . hin−p

)
= 0,
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for all j1 ≤ · · · ≤ jp ∈ J ; it follows that this quantity is also invariant under [p, p] and

hence, by lemma 2.3, under h. Thus it is actually g-invariant. Introduce a basis (yk)k∈K

of the K-module Sn−p,0(g ⊕ g)g, so that we can write

xi1...in−pj1...jp
hi1 . . . hin−p

=
∑

k∈K

bk j1...jp
yk ,

with bk j1...jp
∈ K, for all j1 ≤ · · · ≤ jp ∈ J . Now, as x is h-invariant, we also have

h ⊲ x = bk j1...jp
yk h ⊲

(
pj1 . . . pjp

)
= 0 .

This yields h ⊲
(
bk j1...jp

pj1 . . . pjp

)
= 0, for all k ∈ K. Introduce a basis (zl)l∈L for the

K-module S0,p(g ⊕ g)h, so that we can write, for all k ∈ K,

bk j1...jp
pj1 . . . pjp

=
∑

l∈L

aklzl ,

with akl ∈ K for all k ∈ K and l ∈ L. Now, x can be rewritten as

x =
∑

k∈K

∑

l∈L

akl yk zl ,

with yk ∈ Sn−p,0(g ⊕ g)g for all k ∈ K and zl ∈ S0,p(g ⊕ g)h for all l ∈ L.

Let us now restrict our attention to the class of symmetric Lie algebras encompassed by

the following

Definition 3.2 We say that a symmetric semisimple Lie algebra (g, θ) with associated

symmetric decomposition g = h⊕ p is of restrictive type (or has the restriction property)

if and only if for all p ∈ N0, the projection from g to p maps Sp(g ⊕ g)g onto S0,p(g ⊕ g)h.

This restriction property will be sufficient to allow us to prove a refined version of White-

head’s lemma in the next section. Note that it is similar to the so-called surjection property

– namely that the restriction from g to p maps S(g)g onto S(p)h – which is known to hold

for all classical symmetric Lie algebras [13] and which has proven useful in a number of

contexts [14]. In our case we have, at least,

Lemma 3.3 If a symmetric semisimple Lie algebra splits (as in lemma 2.2), in such a

way that its simple factors are drawn only from the following classical families of simple

symmetric Lie algebras:

AIn>2 : (su(n), so(n))n>2 , AIIn : (su(2n), sp(2n))n∈N∗ , BDIn>2,1 : (so(n+1), so(n))n>2 ,

then it is of restrictive type.

Proof. See appendix.
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3.4 Contractible homomorphisms of K[[h]]-modules

Let K[[h]] denote the K-algebra of formal power series in h with coefficients in the field K

and let Ug[[h]] be the Ug-algebra of formal power series in h with coefficients in Ug. We

have a natural K-algebra monomorphism i : Ug →֒ Ug[[h]]. There is also an epimorphism of

K-algebras j : Ug[[h]] ։ Ug such that j ◦ i = id on Ug. We shall therefore identify Ug with

its image i(Ug) ⊂ Ug[[h]]. We shall also consider complete K[[h]]-modules and it is assumed

that the tensor products considered from now on are completed in the h-adic topology. In

this subsection, we further assume that g = h ⊕ p is a symmetric decomposition.

Definition 3.4 Let p ∈ Z, m ∈ N0 be integers. An element x of (Ug)⊗m[[h]] is (p, p)-

contractible if and only if there exists a collection (xn)n∈N0
of elements of (Ug)⊗m such

that,

x =
∑

n≥0

hn xn (3.18)

and, for all n ∈ N0, there exists l(n) ∈ N0 such that xn ∈ Fl(n),n+p ((Ug)⊗m).

Similarly, a subset X ⊂ (Ug)⊗m[[h]] is (p, p)-contractible if all its elements are, accord-

ing to the previous definition. Note that for the sake of simplicity, we shall refer to

(0, p)-contractible elements or sets as p-contractible. Let us now define the notion of

contractibility for K[[h]]-module homomorphisms in Hom (Ug⊗m[[h]], (Ug)⊗n[[h]]).

Definition 3.5 Let r, s ∈ N0 and p ∈ Z be integers. A homomorphism of K[[h]]-modules

φ : (Ug)⊗r[[h]] → (Ug)⊗s[[h]] is p-contractible if and only if, for all n,m ∈ N0, φ(Fn,m(Ug⊗r))

is (m, p)-contractible as a subset.

Let us emphasize that for every p-contractible K[[h]]-module homomorphism φ : (Ug)⊗r[[h]] →

(Ug)⊗s[[h]], there exists a collection (ϕn)n∈N0
of K[[h]]-module homomorphisms ϕn : (Ug)⊗r[[h]] →

(Ug)⊗s[[h]] such that

φ =
∑

n≥0

hn ϕn (3.19)

and, for all n,m, p ∈ N0, there exists l(n) ∈ N0 such that ϕn (Fm,p((Ug)⊗r)) ⊆ Fl(n),n+p ((Ug)⊗s).

The following two lemmas shall be useful in the next sections.

Lemma 3.6 Let φ and ψ be two p-contractible homomorphisms of K[[h]]-modules. Then

the K[[h]]-module homomorphism φ ◦ ψ is p-contractible.

Proof. We have

φ =
∑

n≥0

hn ϕn and ψ =
∑

n≥0

hn ψn ,
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with, for all n,m, p ∈ N0, ϕn(Fm,p) ⊆ F∗,n+p, and ψn(Fm,p) ⊆ F∗,n+p. For the sake of

simplicity we shall omit the arguments of the bifiltration and denote by ∗ the integer l(n)

whose existence is guaranteed by the definition of contractibility. We thus have

φ ◦ ψ =
∑

n≥0

∑

m≥0

hn+m ϕn ◦ ψm =
∑

n≥0

hn

n∑

m=0

ϕm ◦ ψn−m ,

with, for all l,m, n, p ∈ N0, ϕm ◦ ψn−m(Fl,p) ⊆ ϕm(F∗,n−m+p) ⊆ F∗,n+p.

The following holds for the inverse.

Lemma 3.7 Let φ be a p-contractible homomorphism of K[[h]]-modules, congruent with

id mod h. Then the K[[h]]-module homomorphism φ−1 = id mod h is p-contractible.

Proof. We shall construct

φ−1 =
∑

n≥0

hn ϕn ,

by recursion on the order in h, by demanding that φ ◦φ−1 = id. At leading order, we have

ϕ0 = id and therefore ϕ0(Fm,p) ⊆ Fm,p, for all m, p ∈ N0. Let us assume that we have a

polynomial φ−1
n of degree n > 0 such that

φ ◦ φ−1
n − id = q mod hn+1 .

Assuming that φ−1
n is p-contractible, we have by lemma 3.6 that φ ◦ φ−1

n is p-contractible,

as φ is p-contractible by assumption. Therefore, q(Fm,p) ⊆ F∗,n+1+p. Now, to complete the

recursion, we have to find ϕn+1 such that

φ ◦
(
φ−1

n + hn+1 ϕn+1

)
− id = 0 mod hn+2 .

This is achieved by taking ϕn+1 = −q. We thus have ϕn+1(Fm,p) ⊆ F∗,n+1+p.

Finally, when φ is not only a K[[h]]-module homomorphism but also a K[[h]]-algebra ho-

momorphism, we have the following useful lemma.

Lemma 3.8 Let φ : (Ug)⊗s[[h]] → (Ug)⊗t[[h]] be a homomorphism of K[[h]]-algebras. It

is p-contractible if and only if φ (F1,0((Ug)⊗s)) is (0, p)-contractible and φ (F0,1((Ug)⊗s)) is

(1, p)-contractible.

Proof. If φ is p-contractible, it follows from the definition that, in particular, φ (F1,0) is

(0, p)-contractible and φ (F0,1) is (1, p)-contractible. Now, assuming that φ (F1,0) is (0, p)-

contractible and φ (F0,1) is (1, p)-contractible, we want to prove that, for all m, p ∈ N0,

φ (Fm,p) is (p, p)-contractible. We proceed by recursion on m and p. We have assumed
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the result for m = 1 and p = 0, as well as for m = 0 and p = 1. Suppose that, for some

m, p ∈ N0, we have proven that, for all m′ < m, p′ < p and n ∈ N0, there exists l ∈ N0

such that ϕn (Fm′,p′) ⊆ Fl,n+p′. Then, for all n ∈ N0,

ϕn

(
Fm,p+1((Ug)⊗s)

)
= ϕn

(
m⊕

k=0

p
⊕

l=0

span Fk,l · F0,1 · Fm−k,p−l

)

=
m⊕

k=0

p
⊕

l=0

span
∑

σ∈C3(n)

ϕσ1
(Fk,l) · ϕσ2

(F0,1) · ϕσ3
(Fm−k,p−l)

⊆

m⊕

k=0

p
⊕

l=0

spanσ∈C3(n) F∗,σ1+l · F∗,σ2+1 · F∗,σ3+p−l = F∗,n+p+1 ,

where, for all X ⊆ (Ug)⊗s, span X denotes the K-module linearly generated by X and

C3(n) is the set {σ = (σ1, σ2, σ3) ∈ N
3
0 :

∑3
i=1 σi = n} of weak 3-compositions of n.

Similarly, we have

ϕn

(
Fm+1,p((Ug)⊗s)

)
= ϕn

(
m⊕

k=0

p
⊕

l=0

span Fk,l · F1,0 · Fm−k,p−l

)

=
m⊕

k=0

p
⊕

l=0

span
∑

σ∈C3(n)

ϕσ1
(Fk,l) · ϕσ2

(F1,0) · ϕσ3
(Fm−k,p−l)

⊆

m⊕

k=0

p
⊕

l=0

spanσ∈C3(n) F∗,σ1+l · F∗,σ2
· F∗,σ3+p−l = F∗,n+p ,

for all n ∈ N0.

3.5 Contractible deformation Hopf algebras

We recall that U(g) possesses a natural cocommutative Hopf algebra structure, whose

coproduct is the algebra homomorphism ∆0 : Ug → Ug⊗Ug defined by ∆0(x) = x⊗1+1⊗x

for all x ∈ g, and whose counit and antipode are specified by ǫ0(1) = 1 and S0(1) = 1. We

refer to this as the undeformed Hopf algebra structure.

Given the notion of contractibility introduced in the preceding subsections, it is natural

to specialize the usual notion of a quantization – i.e. a deformation – of a universal

enveloping algebra, as follows.

Definition 3.9 Let (g, θ) be a symmetric Lie algebra, with symmetric decomposition g =

h⊕p. A p-contractible deformation (Uhg, ·h,∆h, ǫh, Sh) of the Hopf algebra (Ug, ·,∆0, ǫ0, S0)

is a topological Hopf algebra such that

12



• there exists a K[[h]]-module isomorphism η : Uhg
∼

−→ Ug[[h]];

• µh := η ◦ (·h) ◦ (η−1 ⊗ η−1) = · mod h and µh is p-contractible;

• ∆̃h := (η ⊗ η) ◦ ∆h ◦ η−1 = ∆0 mod h and ∆̃h is p-contractible;

• S̃h := η ◦ Sh ◦ η
−1 = S0 mod h and S̃h is p-contractible;

• ǫ̃h = ǫh ◦ η−1 = ǫ0 mod h and ǫ̃h is p-contractible.

This definition can be naturally restricted to bialgebras and algebras.

4 On the cohomology of associative and Lie algebras

4.1 The Hochschild cohomology

Let A be a K-algebra. For any (A,A)-bimodule (M, ⊲, ⊳) and all n ∈ N0
∗, we define the

(A,A)-bimodule of n-cochains Cn(A,M) = Hom(A⊗n,M). We also set C0(A,M) = M .

To each cochain module Cn(A,M), we associate a coboundary operator, i.e. a derivation

operator δn : Cn(A,M) −→ Cn+1(A,M), by setting, for all f ∈ Cn(A,M),

δnf (x1, . . . , xn+1) = x1 ⊲ f (x2, . . . , x̂i, . . . , xn+1) +

n∑

i=1

(−1)i f (x1, . . . , xixi+1, . . . , xn+1)

+ (−1)n+1 f (x1, . . . , xn) ⊳ xn+1 (4.1)

for all x1, . . . , xn+1 ∈ A. One can check that δn ◦ δn+1 = 0 for all n. Therefore, the (Cn, δn)

thus defined constitute a cochain complex. It is known as the Hochschild or standard

complex [15] – see also [16] or [17]. An element of the (A,A)-bimodule Zn(A,M) = ker δn ⊂

Cn(A,M) is called an n-cocycle, while an element of the (A,A)-bimodule Bn(A,M) =

im δn−1 ⊂ Cn(A,M) is called an n-coboundary. As usual, the quotient

HHn(A,M) = Zn(A,M)/Bn(A,M) (4.2)

defines the n-th cohomology module of A with coefficients in M . In the next section, we

shall be particularly interested in the Hochschild cohomology of the universal enveloping

algebra of a given Lie algebra g, i.e. A = Ug, with coefficients in M = Ug. The latter

trivially constitutes a (Ug,Ug)-bimodule with the multiplication · of Ug as left and right

Ug-action. Concerning the Hochschild cohomology we will need the following result – see

for example theorem 6.1.8 in [2].

Lemma 4.1 Let g be a semisimple Lie algebra over K. Then, HH2(Ug,Ug) = 0.
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4.2 The Chevalley-Eilenberg cohomology

Let g be a Lie algebra over K and (M, ⊲) a left g-module. For all n ∈ N0
∗, we define the

left g-module of n-cochains Cn(g,M) = Hom(∧ng,M), with left g-action

(x ⊲ f) (x1, . . . , xn) = x ⊲ (f(x1, . . . , xn)) −
n∑

i=1

f (x1, . . . , [x, xi], . . . , xn) , (4.3)

for all f ∈ Cn(g,M) and all x, x1, . . . , xn ∈ g. We also set C0(g,M) = M with its natural

left g-module structure. To each cochain module Cn(g,M), we associate a coboundary

operator, i.e. a derivation operator dn : Cn(g,M) −→ Cn+1(g,M), by setting, for all

f ∈ Cn(g,M),

dnf (x1, . . . , xn+1) =
n+1∑

i=1

(−1)i+1 xi ⊲ f (x1, . . . , x̂i, . . . , xn+1)

+
∑

1≤i≤j≤n+1

(−1)i+j f ([xi, xj ] , x1, . . . , x̂i, . . . , x̂j, . . . , xn+1) (4.4)

for all x1, . . . , xn+1 ∈ g. In (4.4), hatted quantities are omitted and ⊲ denotes the left

g-action on M . One can check that dn ◦ dn+1 = 0 for all n. Therefore, the (Cn, dn) thus

defined constitute a cochain complex. It is known as the Chevalley-Eilenberg complex [18],

– see also [16] or [17]. An element of Zn(g,M) = ker dn ⊂ Cn(g,M) is called an n-cocycle,

while an element of Bn(g,M) = im dn−1 ⊂ Cn(g,M) is called an n-coboundary. As usual,

the quotient

Hn(g,M) = Zn(g,M)/Bn(g,M) (4.5)

defines the n-th cohomology module of g with coefficients in M . One can check that, for all

n ∈ N0, Z
n(g,M), Bn(g,M) and Hn(g,M) naturally inherit the left g-module structure

of Cn(g,M), as for all n ∈ N0,

d (x ⊲ f) = x ⊲ df , (4.6)

for all f ∈ Cn(g,M) and all x ∈ g. An important result about the Chevalley-Eilenberg

cohomology of Lie algebras concerns finite dimensional complex semisimple Lie algebras.

It is known as Whitehead’s lemma.

Lemma 4.2 Let g be a semisimple Lie algebra over K. If M is any finite-dimensional left

g-module, then H1(g,M) = H2(g,M) = 0.

A proof of this result can be found, for instance, in section 7.8 of [17].
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4.3 Contractible Chevalley-Eilenberg cohomology

In the next section, we will be mostly interested in the module M = Ug ⊗ Ug, with the

left g-action induced by (3.5) and (3.6), i.e.

g ⊲ x = [∆0(g), x] , (4.7)

for all g ∈ g and all x ∈ Ug⊗Ug. In particular, we shall need a refinement of Whitehead’s

lemma, in the case of symmetric semisimple Lie algebras of restrictive type, taking into

account the possible p-contractibility of the generating cocycles of Z∗(g,Ug ⊗ Ug). For

all m,n ∈ N0, we therefore define Cn
m,p(g,Ug ⊗ Ug) as the set of (m, p)-contractible n-

cochains, by which we mean the set of n-cochains f ∈ Cn(g,Ug ⊗ Ug), such that, for all

0 ≤ p ≤ n, f ((∧n−ph) ∧ (∧pp)) ⊆ Fl,m+p(Ug ⊗ Ug), for some l ∈ N0. Defining similarly,

Zn
m,p(g,Ug ⊗ Ug) = ker dn ∩ Cn

m,p(g,Ug ⊗ Ug) and Bn
m,p(g,Ug ⊗ Ug) = dn−1C

n−1
m,p (g,Ug ⊗

Ug) as the modules of the (m, p)-contractible n-cocycles and of the n-coboundaries of

(m, p)-contractible n− 1-cochains, respectively, we can define the n-th (m, p)-contractible

cohomology module as

Hn
m,p(g,Ug ⊗ Ug) = Zn

m,p(g,Ug ⊗ Ug)/Bn
m,p(g,Ug ⊗ Ug) . (4.8)

It is worth emphasizing that these cohomology modules generally differ from the usual ones

Hn(g,Ug⊗Ug). Consider for instance a case for which H1(g,Ug⊗Ug) = 0. We have that

every 1-cocycle in Z1(g,Ug ⊗ Ug), and therefore every cocycle f ∈ Z1
m,p(g,Ug ⊗ Ug), is

the coboundary of an element x ∈ Ug⊗Ug. However, although the considered f is (m, p)-

contractible, it may be that it can only be obtained as the coboundary of an element

x ∈ Ug ⊗ Ug that does not belong to any F∗,m(Ug ⊗ Ug), thus yielding a non-trivial

cohomology class in H1
m,p(g,Ug ⊗ Ug). When g is a symmetric semisimple Lie algebra of

restrictive type, we nonetheless establish the following lemma concerning the first (m, p)-

contractible cohomology module H1
m,p(g,Ug ⊗ Ug).

Lemma 4.3 Let (g, θ) be a symmetric semisimple Lie algebra of restrictive type over K and

let g = h⊕p be the associated symmetric decomposition of g. We have H1
m,p(g,Ug⊗Ug) = 0,

for all m ∈ N0.

Proof. Let m ∈ N0 be a positive integer. We have to prove that every (m, p)-contractible

1-cocycle f ∈ Z1
m,p(g,Ug⊗Ug) is the coboundary of an element α ∈ Fl,m(Ug⊗Ug), for some

l ∈ N0. From lemma 4.2, there exists an x ∈ Ug ⊗ Ug such that f = d0x. All we have to

prove is that we can always find a left g-invariant y ∈ (Ug ⊗ Ug)g, such that x = y modulo

Fl,m(Ug ⊗ Ug) for some l ∈ N0. Then, we can check that for α = x − y ∈ Fl,m(Ug ⊗ Ug),
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we have

d0α = d0 (x− y) = d0x = f .

In view of (3.17), we can first expand x into its components in the left g-modules isomorphic

to the Sn(g ⊕ g), for all n ∈ N0. Up to the isomorphism of left g-modules, which we shall

omit here, we have x =
∑

n≥0 xn where, for all n ∈ N0, xn ∈ Sn(g ⊕ g). Similarly, we can

further decompose each Sn(g ⊕ g) into the left h-modules Sn−p,p(g ⊕ g), with 0 ≤ p ≤ n,

and, accordingly, each xn. We are now going to construct the desired y ∈ (Ug ⊗ Ug)g

by recursion, submodule by submodule. If xn = 0 for all n > m, we can set y = 0 and

we are done. So, suppose that there exists an n > m such that xn 6= 0 and let x0,n

be the component of xn in S0,n(g ⊕ g). If x0,n vanishes, we can skip to the component

of xn in S1,n−1(g ⊕ g). Otherwise, we are going to prove that there exists a g-invariant

yn,0 ∈ Sn(g ⊕ g)g, such that the component of xn − yn,0 in S0,n(g ⊕ g) vanishes. From f

being (m, p)-contractible, we know that

f(h) = d0x(h) = h ⊲

(

xn +
∑

n′ 6=n

xn′

)

⊆ Fl,m(Ug ⊗ Ug) , (4.9)

for some l ∈ N0. Therefore, since the Sm,p(g ⊕ g) are left h-modules, we have h ⊲ x0,n = 0.

Since g has the restriction property, definition 3.2, it follows that the h-invariant tensor

x0,n ∈ S0,n(g ⊕ g)h is the restriction to p of a g-invariant tensor yn,0 ∈ Sn(g ⊕ g)g. Now

consider xn − yn,0. By construction, it has no component in S0,n(g ⊕ g). If n − 1 ≤ m,

we set yn = yn,0 and skip to another g-module Sn′>m(g ⊕ g) where x has a non-vanishing

component, if any. Otherwise, let 0 ≤ k < n −m and assume that we have found yn,k ∈

Sn(g ⊕ g)g, such that xn − yn,k has vanishing component in all the Sn−p,p(g ⊕ g) with

p ≥ n − k > m. We are going to prove that there exists yn,k+1 ∈ Sn(g ⊕ g)g such that

xn − yn,k+1 has vanishing component in all the Sn−p,p(g ⊕ g) with p ≥ n − k − 1. To do

so, let xk+1,n−k−1 be the component of xn − yn,k in Sk+1,n−k−1(g ⊕ g). If it is zero, we

set yn,k+1 = yn,k. Otherwise, note that from (4.9), we have h ⊲ xk+1,n−k−1 = 0. But the

(m, p)-contractibility of f also implies that

f(p) = d0x(p) = p ⊲

(

xn − yn,k +
∑

n′ 6=n

xn′

)

⊆ Fl,m+1(Ug ⊗ Ug) ,

from which it follows that p⊲xk+1,n−k−1 ∈ Sk+2,n−k−2(g⊕g). According to lemma 3.1, we can

write xk+1,n−k−1 =
∑

i,j aij wi zj, with aij ∈ K, wi ∈ Sk+1,0(g⊕g)g and zj ∈ S0,n−k−1(g⊕g)h.

Since g has the restriction property, all the zj are the restrictions to p of g-invariant elements

ζj ∈ Sn−k−1(g ⊕ g)g. Now, set yn,k+1 = yn,k +
∑

i,j aij wi ζj . It is obvious that yn,k+1 ∈

Sn(g ⊕ g)g and, by construction, xn − yn,k+1 has no component in all the Sn−p,p(g ⊕ g),

with p ≥ n − k − 1. The recursion goes on until we have yn,n−m ∈ Sn(g ⊕ g)g such that
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xn − yn,n−m has vanishing components in all the Sn−p,p(g ⊕ g), with p > m. We therefore

set yn = yn,n−m. By repeating this a finite number of times 5, in all the Sn′>m(g ⊕ g) in

which x has non-vanishing components, we obtain the desired y =
∑

n≥0 yn.

5 Rigidity theorems

5.1 Contractible algebra isomorphisms

Proposition 5.1 Let g be a semisimple Lie algebra over K and let h be a symmetrizing

Lie subalgebra with orthogonal complement p in g. Then, for every p-contractible deforma-

tion algebra (Uhg, ·h) of (Ug, ·), there exists a p-contractible isomorphism of K[[h]]-algebras

(Uhg, ·h)
∼

−→ (Ug[[h]], ·), that is congruent with id mod h.

Proof. By definition, there exists a K[[h]]-module isomorphism η : Uhg
∼

−→ Ug[[h]]. The

latter defines a K[[h]]-algebra isomorphism between (Uhg, ·h) and (Ug[[h]], µh), where µh :=

η ◦ (·h)◦ (η−1 ⊗ η−1) = · mod h. If we found a p-contractible K[[h]]-algebra automorphism

φ : (Ug[[h]], µh)
∼

−→ (Ug[[h]], ·) , (5.1)

we would prove the proposition as φ◦η would constitute the desired K[[h]]-algebra isomor-

phism from (Uhg, ·h) to (Ug[[h]], ·). Let φ be a K[[h]]-module automorphism on Ug[[h]].

The condition for such an automorphism to be the K[[h]]-algebra automorphism (5.1) is

µh = φ−1 ◦ (·) ◦ (φ⊗ φ) . (5.2)

Let us construct

φ =
∑

n≥0

hn ϕn , (5.3)

order by order in h. At leading order, we have µ0 = · and we can take ϕ0 = id ∈

Hom(Ug[[h]],Ug[[h]]). We thus have ϕ0(Fm,p(Ug)) ⊆ Fm,p(Ug), for all m, p ∈ N0. Suppose

now that we have found a polynomial of degree n > 0,

φn =

n∑

m=0

hm ϕm , (5.4)

such that

µh − φ−1
n ◦ (·) ◦ (φn ⊗ φn) = hn+1r mod hn+2 , (5.5)

5It is rather obvious that x has non-vanishing components in a finite number of submodules Sn(g⊕ g),
as there always exists an l ∈ N such that x ∈ Fl(Ug ⊗ Ug).
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where φ−1
n denotes the exact inverse series of φn defined by φn◦φ

−1
n = id and r ∈ Hom(Ug⊗

Ug[[h]],Ug[[h]]). We assume that φn is p-contractible. Therefore, (·) ◦ (φn ⊗ φn) is p-

contractible. By lemma 3.7, φ−1
n is p-contractible and, by lemma 3.6, φ−1

n ◦ (·) ◦ (φn ⊗ φn)

is p-contractible. By definition of a p-contractible deformation algebra, we know that µh

is p-contractible. It therefore follows from (5.5) at order hn+1 that r(Fm,p(Ug ⊗ Ug)) ⊆

F∗,n+1+p(Ug), for allm, p ∈ N0. From the associativity of µh, we deduce that r is a 2-cocycle

in the Hochschild complex,

δ2r = 0 . (5.6)

As g is semisimple, it follows from lemma 4.1 that its second Hochschild cohomology

module HH2(Ug,Ug) is empty, so that r is a coboundary. We thus have r = δ1β, for some

β ∈ Hom(Ug[[h]],Ug[[h]]). But we know that, in particular, r(F2,0(Ug⊗Ug)) ⊆ F∗,n+1(Ug)

and r(F1,1(Ug ⊗ Ug)) ⊆ F∗,n+2(Ug). It follows that β can be consistently chosen so that

β(F1,0(Ug)) ⊆ F∗,n+1(Ug) and β(F0,1(Ug)) ⊆ F∗,n+2(Ug). To complete the recursion, we

have to solve

µh =
(
φ−1

n − hn+1ϕn+1 mod hn+2
)
◦
[(
φn + hn+1ϕn+1

)
·
(
φn + hn+1ϕn+1

)]
mod hn+2

that is

δ1ϕn+1 = r . (5.7)

This equation can be solved by taking ϕn+1 = −β, which implies that ϕn+1(F1,0(Ug)) ⊆

F∗,n+1(Ug) and ϕn+1(F0,1(Ug)) ⊆ F∗,n+2(Ug). The proposition then follows from lemma

3.8.

5.2 Contractible twisting for symmetric semisimple Lie algebras

Proposition 5.2 Let (g, θ) be a symmetric semisimple Lie algebra over K having the re-

striction property, and let g = h⊕p be the associated symmetric decomposition of g. Every

p-contractible deformation (Uhg,∆, ǫ, S) of the Hopf algebra (Ug,∆0, ǫ0, S0) is isomorphic,

as a Hopf algebra over K[[h]], to a twist of (Ug,∆0, ǫ0, S0) by a p-contractible invertible

element F ∈ Ug ⊗ Ug[[h]], congruent with 1 ⊗ 1 mod h.

Proof. We consider the composite map

∆̃ : Ug[[h]]
∼

−→ Uhg
∆

−→ Uhg ⊗ Uhg
∼

−→ Ug ⊗ Ug[[h]] , (5.8)

where the existence of a p-contractible isomorphism of K[[h]]-algebras φ follows from propo-

sition 5.1. As φ is an algebra isomorphism, the composite map ∆̃ is an algebra homomor-

phism. By repeated use of lemma 3.6, one can show that it is p-contractible. Now, we
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want to prove that there exists a p-contractible and invertible element F ∈ Ug ⊗ Ug[[h]],

such that F = 1 ⊗ 1 mod h and

∆̃ = F∆0F
−1 . (5.9)

We shall proceed by recursion on the order in h. To first order, we have, by construction

∆̃ = ∆0 mod h (5.10)

and we can take F = 1 ⊗ 1 mod h. We thus have F|h=0 ∈ F0,0(Ug ⊗ Ug). Suppose now

that we have found a polynomial Fn ∈ Ug ⊗ Ug[h] of degree n,

Fn =
n∑

m=0

hm fm , (5.11)

such that

∆̃ − Fn∆0F
−1
n = hn+1ξ mod hn+2 , (5.12)

where F−1
n ∈ Ug ⊗ Ug[[h]] is the formal inverse of F in the sense that F−1F = 1

and ξ ∈ Hom(Ug[[h]],Ug ⊗ Ug[[h]]). We assume that Fn is p-contractible, i.e. for all

n ∈ N0, fn ∈ F∗,n(Ug ⊗ Ug). Since ∆̃ is p-contractible, we deduce that ξ(F1,0(Ug)) ⊆

F∗,n+1(Ug⊗Ug) and ξ(F0,1(Ug) ⊆ F∗,n+2(Ug). It follows from (5.12) that, for all X, Y ∈ g,

we have
(

∆̃ − Fn∆0F
−1
n

)

([X, Y ]) = hn+1ξ([X, Y ]) mod hn+2 , (5.13)

on one hand and, on the other hand, since ∆̃ is an algebra homomorphism,

(

∆̃ − Fn∆0F
−1
n

)

([X, Y ]) =
[

∆̃X, ∆̃Y
]

− Fn∆0([X, Y ])F−1
n

= hn+1 ([∆0X, ξ(Y )] + [ξ(X),∆0Y ]) mod hn+2.(5.14)

Equating (5.13) and (5.14), we finally get

d1ξ = 0 . (5.15)

The map ξ is thus a 1-cocycle of Z1(g,Ug ⊗ Ug) in the sense of the Chevalley-Eilenberg

complex 6. As g is semisimple, it follows from lemma 4.2 that the cohomology module

H1(g,Ug⊗Ug) is empty. We therefore conclude that ξ is a coboundary. But we know that

ξ(F0,1(Ug)) ⊆ F∗,n+2(Ug⊗Ug) and ξ(F1,0(Ug)) ⊆ F∗,n+1(Ug⊗Ug), so that ξ is an (n+1, p)-

contractible 1-cocycle in the contractible Chevalley-Eilenberg complex defined in subsection

6By rewriting (5.13-5.14) for the associative product of two arbitrary elements in Ug, we also show that
ξ is a 1-cocycle in the sense of the Hochschild complex. This indeed provides a unique continuation of ξ

from g to Ug as a derivation.
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4.3. As g is of restrictive type, it follows from lemma 4.3, that H1
n+1,p(g,Ug ⊗ Ug) = 0, so

that ξ is the coboundary of an (n+ 1, p)-contractible element in Ug⊗Ug, i.e. there exists

an α ∈ F∗,n+1(Ug ⊗ Ug) such that ξ = d0α = δ0α. In order to complete the recursion, we

have to find an fn+1 ∈ Ug ⊗ Ug such that

∆̃ −
(
Fn + hn+1f(n+1)

)
∆0

(
F

−1
n − hn+1f(n+1) mod hn+2

)
= 0 mod hn+2 . (5.16)

Expanding the above equation to order hn+1 yields

δ0fn+1 + ξ = 0 . (5.17)

This equation can then be solved by choosing fn+1 = −α ∈ F∗,n+1(Ug ⊗ Ug).

5.3 Contractible triangular quasi-Hopf algebra structure

Recall, [2, 3], that the notion of twisting extends to quasi-triangular quasi-Hopf (qtqH)

algebras: given a Hopf algebra H = (A, ·,∆, S, ǫ, 1) equipped with qtqH algebra struc-

ture (R,Φ), the twisted Hopf algebra HF = (A, ·,F∆F−1, S, ǫ, 1) has the qtqH algebra

structure (RF ,ΦF ), where

RF = F21RF
−1 and ΦF = F12 · (∆ ⊗ id) (F ) · Φ · (id ⊗ ∆) (F−1) · F−1

23 . (5.18)

Naturally, we say that a qtqH structure (R,Φ) on the QUEA Uh(g) is p-contractible with

respect to a symmetric decomposition g = h⊕p if and only if R and Φ are p-contractible as

elements of, respectively, (Uhg)⊗2 and (Uhg)⊗3. It then follows from the definitions above

that

Proposition 5.3 For any QUEA Uhg and any symmetric decomposition g = h ⊕ p, if

(R,Φ) is a p-contractible qtqH algebra structure for Uh(g) and F ∈ (Uhg)⊗2 is a p-

contractible twist then (RF ,ΦF ) is a p-contractible qtqH algebra structure on the twisted

Hopf algebra Uh(g)F .

Combining this with propositions 5.1 and 5.2, we have that every p-contractible qtqH

algebra structure on a QUEA Uhg can be obtained, via a change of basis and twist, from

some p-contractible qtqH algebra structure on the undeformed envelope Ug. In particular,

starting from the trivial triangular structure (R = 1 ⊗ 1,Φ = 1 ⊗ 1 ⊗ 1) on Ug, which is

obviously p-contractible, we have

Corollary 5.4 Every p-contractible deformation Hopf algebra (Uhg,∆, ǫ, S) based on a

symmetric semisimple Lie algebra of restrictive type with symmetric decomposition g =

h ⊕ p, admits a p-contractible triangular quasi-Hopf algebra structure.
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Proof. Explicitly, by propositions 5.1 and 5.2, there exist a p-contractible invertible

element F ∈ Ug ⊗ Ug[[h]] and a p-contractible K[[h]]-algebra isomorphism φ, such that

∆ =
(
φ−1 ⊗ φ−1

)
◦ F∆0F

−1 ◦ φ .

Defining

R := φ−1 ⊗ φ−1
(
F21F

−1
)
, (5.19)

Φ := φ−1 ⊗ φ−1 ⊗ φ−1
(
F12 · (∆0 ⊗ id) (F ) · (id ⊗ ∆0) (F−1) · F−1

23

)
(5.20)

provides the required structure.

It is natural to ask whether any qtqH algebra structures on the envelope Ug other than

the trivial one are p-contractible. In section 7, we provide an example for which this is the

case and one for which it is not.

6 Twists and κ-deformations

We can now finally turn to the objects in which we are really interested in this paper: those

deformed enveloping algebras of non-semisimple Lie algebras that are obtained by a certain

contraction procedure modelled on that used in [7, 8, 19] to obtain the κ-deformation of

Poincaré. The notion of p-contractibilty introduced in the previous sections is formulated

with this type of contraction in mind, as we now discuss.

Recall first that if g = h⊕p is a symmetric decomposition of a Lie algebra g, a standard

procedure known as Inönu-Wigner contraction, [20], consists in contracting the submodule

p by means of a one-parameter family of linear automorphisms of the form

Λt = πh + t πp , (6.1)

where πh : g ։ h and πp : g ։ p denote the linear projections from g to h and p respectively

and t ∈ (0, 1]. For all t ∈ (0, 1], the image of g by the automorphism Λ−1
t is the symmetric

semisimple Lie algebra gt, isomorphic to g = h ⊕ p as a K-module, with Lie bracket

[X, Y ]t = Λ−1
t ([Λt(X),Λt(Y )]) (6.2)

for all X, Y ∈ g. It has the property that

[h, h]t ⊂ h , [h, p]t ⊂ p , and [p, p]t ⊂ t2h . (6.3)

so in the limit t→ 0 one obtains a Lie algebra g0, isomorphic to g = h⊕ g as a K-module,

whose Lie bracket [, ]0 = limt→0[, ]t obeys

[h, h]0 ⊂ h , [h, p]0 ⊂ p , and [p, p]0 = {0} . (6.4)
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The submodule p is therefore an abelian ideal in g0. The undeformed Hopf algebra struc-

ture defined in section 3.1 is preserved as t tends to zero. There is thus a natural unde-

formed Hopf algebra structure (U(g0),∆0, S0, ǫ0) on the envelope U(g0) of the contracted

Lie algebra.

We may extend Λt over Ug[[h]] as a K[[h]]-algebra homomorphism. Further, by means

of the K[[h]]-module isomorphism η of definition 3.9, we can regard Λt as a map Uhg → Uhg

on any QUEA Uhg. This specifies how every element of the latter is to be rescaled in the

contraction limit.

The relevance of the definition of p-contractibility from section 3 is then contained in

the following

Definition-Proposition 6.1 Let (g, θ) be a symmetric semisimple Lie algebra with sym-

metric decomposition g = h ⊕ p and let (Uhg,∆h, Sh, ǫh) be a deformation of the Hopf

algebra (Ug,∆0, S0, ǫ0). For all t ∈ (0, 1], set

∆t = (Λ−1
t ⊗ Λ−1

t ) ◦ ∆t/κ ◦ Λt , St = Λ−1
t ◦ St/κ ◦ Λt and ǫt = ǫt/κ ◦ Λt , (6.5)

where 1/κ = h/t is the rescaled deformation parameter. Then the limit of (Ut/κ(gt),∆t, St, ǫt)

as t → 0 exists if and only if (Uhg,∆h, Sh, ǫh) is p-contractible. We write QUEAs so ob-

tained as (Uκ(g0),∆κ, Sκ, ǫκ), and refer to them as κ-contractions of (Uhg,∆h, Sh, ǫh) and

as κ-deformations of (U(g0),∆0, S0, ǫ0).

Proof. Let r, s ∈ N and let φ : (Ug)⊗r[[h]] → (Ug)⊗s[[h]] be a homomorphism of K[[h]]-

modules. We want to prove that φt = (Λ−1
t )⊗s◦φ◦(Λt)

⊗r has a finite limit when t→ 0 if and

only if φ is p-contractible. First assume that φ is p-contractible; then from lemma 3.8, there

exists a collection (ϕn)n∈N0
of K[[h]]-module homomorphisms ϕn : (Ug)⊗r[[h]] → (Ug)⊗s[[h]]

such that

φ =
∑

n≥0

hn ϕn (6.6)

and, for all n,m, p ∈ N0, there exists l ∈ N0 such that ϕn (Fm,p((Ug)⊗r)) ⊆ Fl,n+p ((Ug)⊗s).

We thus have, for all n,m, p ∈ N0,

hn (Λ−1
t )⊗s ◦ ϕn ◦ (Λt)

⊗r
(
Sm,p(g

⊕r)
)

= κ−ntn+p (Λ−1
t )⊗s ◦ ϕn

(
Sm,p(g

⊕r)
)

⊆ κ−ntn+p (Λ−1
t )⊗s

(
Fl,n+p((Ug)⊗s)

)

= κ−ntn+pO(t−(n+p))Fl,n+p((Ug)⊗s)

= κ−nO(1)Fl,n+p((Ug)⊗s) .

This obviously has a finite limit when t→ 0 and so does φt. Conversely, one sees that if φ

is not p-contractible, φt diverges at least as t−1.
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It is worth emphasizing that the κ-contractions are a restricted subclass among the possible

contractions that can be performed on QUE algebras: one could also, for example, consider

contractions where the deformation parameter h is not rescaled in the limit.

Finally, we can state our main result concerning twists and κ-deformations:

Theorem 6.1 If a deformation Hopf algebra (Uκ(g0),∆κ, Sκ, ǫκ) is the κ-contraction of

a QUEA of a symmetric Lie algebra (g, θ) having the restriction property, then it is

isomorphic, as a Hopf algebra over K[[h]], to a twist of the undeformed Hopf algebra

(U(g0),∆0, S0, ǫ0) by an invertible element F0 ∈ Uκ(g0) ⊗ Uκ(g0)[[1/κ]] congruent with

1⊗ 1 modulo 1/κ. Thus, in particular, it admits a triangular quasi-Hopf algebra structure.

Proof. By proposition 6.1, proposition 5.2 applies. By arguing as in the proof of 6.1, we

have that if F is the p-contractible twist element of proposition 5.2, then

F0 = lim
t→0

(Λ−1
t ⊗ Λ−1

t )(F ) (6.7)

is well-defined. By construction, this is the twist we seek. The existence of a triangular

quasi-Hopf algebra structure then follows from corollary 5.4.

7 Examples: κ-Poincaré in 3 and 4 dimensions

We now turn to explicit examples. Let K = C, and consider the symmetric decomposition

so(n + 1) = so(n) ⊕ pn , n > 2 , (7.1)

whose Inönu-Wigner contraction of course yields the Lie algebra iso(n) of the complexified

Euclidean group in n dimensions, ISO(n,C). By lemma 3.3, this decomposition is of

restrictive type. Thus, the results above will apply to any pn-contractible deformation

algebra Uh(so(n + 1)). Finding such deformations is itself a non-trivial task. In the cases

n = 3, 4, this was achieved in [7,8] 7, yielding the κ-deformations Uκ(iso(3)) and Uκ(iso(4)).

These can be written in terms of the generators

Mij = −Mji , Ni , Pi, P0 = E , (7.2)

for all 1 ≤ i, j ≤ n− 1 and n = 3, 4. The algebra is then given by

[Mij , Pk] = δk[iPj] (7.3)

7Note that although the κ-Poincaré algebra exists in arbitrary dimension [23], to the authors’ knowledge
it has only explicitly been shown to arise as a κ-contraction for n ≤ 4.
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[Ni, Pj] = δij κ sinh

(
E

κ

)

, [Ni, E] = Pi , (7.4)

[Ni, Nj] = −Mij cosh

(
E

κ

)

+
1

4κ2

(

~P ·~PMij + PkP[iMj]k

)

, (7.5)

for all 1 ≤ i, j, k, l ≤ n− 1. The coproduct is given by

∆κ(E) = E ⊗ 1 + 1 ⊗ E , (7.6)

∆κ(Pi) = Pi ⊗ e
E
2κ + e−

E
2κ ⊗ Pi , (7.7)

∆κ(Ni) = Ni ⊗ e
E
2κ + e−

E
2κ ⊗Ni +

1

2κ

(

Pj ⊗ e
E
2κMij − e−

E
2κMij ⊗ Pj

)

, (7.8)

∆κ(Mij) = Mij ⊗ 1 + 1 ⊗Mij , (7.9)

and the antipode by

Sκ(Pµ) = −Pµ, Sκ(Mij) = −Mij , Sκ(Ni) = −Ni +
d

2κ
Pi. (7.10)

The counit map is undeformed, ǫ(Mij) = ǫ(Ni) = ǫ(Pµ) = 0, for all 0 ≤ µ ≤ n − 1.

It follows from the results presented in the previous sections that both Uκ(iso(3)) and

Uκ(iso(4)) possess a triangular quasi-Hopf algebra structure. This provides, for n = 3, 4, a

proof of the results already anticipated in [4]. The result that Uκ(iso(3)) and Uκ(iso(4)) are

twist equivalent to the corresponding undeformed UEAs should not be confused with other

statements that exist in the literature, [21], concerning twists and κ-deformed Minkowski

space-time, which involve enlarged algebras that include the dilatation generator.

One can also understand the existence of the quasi-triangular Hopf algebra structure

of Uκ(iso(3)) exhibited in [7] in the context of the results above: in the case n = 3 only,

U(so(n+ 1)) possesses a p-contractible quadratic Casimir, namely h t := h ǫijkMijPk, and,

by twisting (R,Φ) = (exp(ht),ΦKZ) by means of the p-contractible twist of proposition

5.2, one obtains a p-contractible quasi-triangular Hopf algebra structure. For n 6= 3, there

is no classical r-matrix obeying the classical Yang-Baxter equation [4,22] and therefore no

quasi-triangular Hopf algebra structure.

As for versions of the κ-deformed Poincaré algebra in higher and lower space-time di-

mensions, a consistent definition was first given in [23]. The main idea is that the four

dimensional case is generic enough that the 1 + d-dimensional case can be obtained by

simply extending or truncating the range of the spatial indices from 1, . . . , 3 to 1, . . . , d.

It is reasonable to think that the twist obtained in the four dimensional case can be sim-

ilarly extended to arbitrary dimensions, thus extending to all dimensions the existence of

a triangular quasi-Hopf algebra structure on the κ-deformation of the Poincaré algebra. A

rigorous proof of this fact would however require further investigation. Note also that there
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exists another, conceptually distinct, construction of κ-Poincaré, namely as a bicrossprod-

uct [24] – see also [25, 26]. It would be interesting to understand the above results from

this point of view.

8 Conclusion and outlook

We have constructed triangular quasi-Hopf algebra structures on a family of non-semisimple

QUEAs – including the κ-deformations of the Euclidean and Poincaré algebras in three

and four dimensions – which are obtained by κ-contraction of QUEAs based on semisimple

Lie algebras of a certain class. The representations of each of these κ-deformed UEAs

therefore constitute a tensor category. The construction of these triangular quasi-Hopf

algebra structures crucially involves twisting by a cochain twist which fails, in general,

to obey the usual 2-cocycle condition, thus yielding a non-trivial coassociator. The proof

of the existence of this twist relies on the vanishing of a certain cohomology class in a

refined version of the Chevalley-Eilenberg complex, which, in turn, is guaranteed by the

restriction property of definition 3.2. Although this constitutes a sufficient condition, we

do not expect that it is necessary. In particular, we expect that the κ-deformation of

U(sl(2)) admits a triangular quasi-Hopf algebra structure [6], but a proof of this statement

would obviously require a refinement of the arguments used here so as to circumvent the

obstructions arising in this case – cf. the appendix. Such a refinement could, for instance,

rely on a further symmetry property of the p-contractible Chevalley-Eilenberg cohomology

of sl(2).

The twist-equivalence of theorem 6.1 also guarantees the existence of quasi-triangular

quasi-Hopf algebra structures on every κ-deformation whose underlying symmetric Lie

algebra is of restrictive type, thus giving rise to a genuinely braided representation theory

(i.e. a quasi-tensor category): by virtue of Drinfel’d’s results [1], one need only pick a

quadratic Casimir of the contracted Lie algebra to construct the qtqH algebra structure

(RKZ,ΦKZ) on the undeformed UEA. It is then natural to ask under what circumstances

κ-contracted QUEAs admit a quasi-triangular Hopf algebra structure. A cohomological

approach to this question – cf. [27] – would certainly prove helpful.
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Appendix: proof of lemma 3.3

In this appendix, we provide a proof of lemma 3.3. Let (g, θ) be a symmetric semisimple

Lie algebra obeying the conditions of the lemma. If g = h⊕ p is the associated symmetric

decomposition of g, we want to prove that, for all p ∈ N, the projection from g to p maps

Sp(g ⊕ g)g onto S0,p(g ⊕ g)h. The isomorphism of left g-modules (3.6) induces a similar

isomorphism S(g⊕ g) ∼= S(g)⊗ S(g) at the level of the symmetric algebras, from which it

follows that

Sm(g ⊕ g) ∼=

m⊕

k=0

Sk(g) ⊗ Sm−k(g) , (8.1)

for all m ∈ N. We thus have a decomposition of S(g⊕g) into the g-submodules isomorphic

to Sk(g)⊗Sm−k(g). There is an analogous decomposition of S0,m(g⊕g) into h-submodules

isomorphic to S0,k(g)⊗S0,m−k(g) = Sk(p)⊗Sm−k(p). It therefore suffices to show that, for

all k, ℓ ∈ N, the restriction map induces a surjection

(Sk(g) ⊗ Sℓ(g))g
։ (Sk(p) ⊗ Sℓ(p))h (8.2)

Identifying g ∼= g∗, and in particular p ∼= p∗, by means of the Killing form, an element

d ∈ Sk(p) ⊗ Sℓ(p) can be regarded as a (k + ℓ)-linear map

p × · · · × p → K; (X, . . . , Y ) 7→ d(X, . . . , Y ) (8.3)

that is symmetric in its first k and final ℓ slots. In view of the polarization formulae, such

maps are in bijection with polynomials of two variables in p, according to

p(d)(X, Y ) = d(X, . . . , X
︸ ︷︷ ︸

k

, Y, . . . , Y
︸ ︷︷ ︸

ℓ

) . (8.4)

These polynomials are (k, ℓ)-homogeneous, by which we mean that they are homogeneous

of degree k with respect to their first argument and of degree ℓ with respect to their second

argument. We denote by Kk,ℓ[p, p] the left h-module of (k, ℓ)-homogeneous polynomials

on p. Then for all k, ℓ ∈ N, (Sk(p) ⊗ Sℓ(p))h is in bijection with the submodule of h-

invariant (k, ℓ)-homogeneous polynomials of Kk,ℓ[p, p]h. Similarly, (Sk(g) ⊗ Sℓ(g))g is in

bijection with Kk,ℓ[g, g]g. Therefore, it suffices to show that the restriction map from g to

p maps Kk,ℓ[g, g]g onto Kk,ℓ[p, p]h. By virtue of lemma 2.2, it will be sufficient to consider

separately the cases of diagonal symmetric Lie algebras and of the symmetric simple Lie

algebras listed in 3.3.

We recall that a diagonal symmetric Lie algebra is a pair (g, θ), where g = v ⊕ v,

for some semisimple Lie algebra v, and θ is the involutive automorphism of Lie algebras
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defined by θ(x, y) = (y, x), for all (x, y) ∈ g. We thus have g = h ⊕ p, where h is the set

elements of g of the form (x, x), whereas p is the set of elements of g of the form (x,−x),

for x ∈ v. We are first going to prove that Kk,ℓ[p, p]h ∼= Kk,ℓ[v, v]v. Let p ∈ Kk,ℓ[p, p] be a

polynomial. For all X, Y ∈ p, we have

p(X, Y ) = p((x,−x), (y,−y)) = p̃(x, y) , (8.5)

for some x, y ∈ v. The left h-action on p induces a left h-action on p × p, given, for all

h ∈ h and all X, Y ∈ p, by

h ⊲ (X, Y ) = (z, z) ⊲ ((x,−x), (y,−y)) = ((z ⊲ x,−z ⊲ x), (z ⊲ y,−z ⊲ y)) , (8.6)

for some x, y ∈ v and some z ∈ v; from which it obviously follows that p̃ is v-invariant

if and only if p is h-invariant. Now, we are going to prove that the restriction map is a

surjection from Kk,ℓ[g, g]g onto Kk,ℓ[v, v]v. Let p ∈ Kk,ℓ[g, g]g be a g-invariant polynomial

on g. The left g-action on g ⊕ g is given, for all g ∈ g and all X, Y ∈ g, by

g ⊲ (X, Y ) = (g1, g2) ⊲ ((x1, x2), (y1, y2)) = ((g1 ⊲ x1, g2 ⊲ x2), (g1 ⊲ y1, g2 ⊲ y2)) , (8.7)

for some g1, g2 ∈ v and some x1, x2, y1, y2 ∈ v. As one can always choose g1 and g2

independently, it follows that in order for p to be g-invariant, there must be a polynomial

f : K × K → K and two v-invariant polynomials p1, p2 ∈ Kk,ℓ[v, v]v such that

p((x1, x2), (y1, y2)) = f(p1(x1, y1), p2(x2, y2)) , (8.8)

for all x1, x2, y1, y2 ∈ v. Now restricting p to p, we get

p((x1,−x1), (y1,−y1)) = f (p1(x1, y1), p2(−(x1, y1))) = p̃(x1, y1) ∈ Kk,ℓ[v, v]v , (8.9)

for all x1, y1 ∈ v. Now, it is obvious that every polynomial in Kk,ℓ[v, v]v can be obtained

as the restriction to p of a polynomial in Kk,ℓ[g, g]g; e.g. take p2 = 0, f = id and p1 = p̃.

We are now going to consider the different symmetric simple Lie algebras listed in 3.3.

Let us first consider the symmetric simple Lie algebras of type AIn for all n > 2. In this

case, we have g = su(n) endowed with an involutive automorphism θ given by complex

conjugation, i.e. θ(x) = x̄, for all x ∈ su(n). The fixed points of θ are traceless real

antisymmetric matrices which generate an so(n) subalgebra. We thus have the symmetric

decomposition su(n) = so(n) ⊕ p, where the orthogonal complement p is the left so(n)-

module generated by the traceless imaginary symmetric matrices of su(n). It follows from

the first fundamental theorem for so(n)-invariant polynomials on n×n matrices, [28], that

Kk,ℓ[p, p]so(n) is generated by the following polynomials

(x, y) ∈ p × p → trP (x, y) , (8.10)
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for all (i, j)-homogeneous noncommutative polynomial P ∈ Ki,j[X, Y ], with i ≤ k and

j ≤ ℓ. The polynomials defined in (8.10) are obviously restrictions to p of su(n)-invariant

polynomials on su(n) as, for all P ∈ Ki,j[X, Y ] and all x, y ∈ su(n),

(x, y) → trP (x, y) (8.11)

defines an element in Km,n[su(n), su(n)]su(n). This proves lemma 3.3 for simple symmetric

Lie algebras of type AIn>2. It is worth noting that in the case of AI2, there exist obstruc-

tions to the above result which are related to the existence of a further so(2)-invariant with

appropriate symmetries, namely the pfaffian (x, y) ∈ p × p → Pf([x, y]). As the latter is

not the restriction to p of any su(2) invariant on su(2), lemma 3.3 does not hold in this

case.

We now turn to type AIIn. In this case, we have g = su(2n) endowed with an involutive

automorphism θ given by the symplectic transpose, i.e., for all x ∈ su(2n), θ(x) = JxtJ ,

where J is a non-singular skew-symmetric 2n × 2n matrix such that J2 = −1. The

fixed point set of θ constitutes an sp(2n) subalgebra and we have the following symmetric

decomposition su(2n) = sp(2n)⊕p, where p ⊂ su(2n) is the left sp(2n)-module of matrices

x ∈ su(2n) such that θ(x) = −x. It follows from the first fundamental theorem for sp(2n)-

invariant polynomials on 2n × 2n matrices, [28], that Kk,ℓ[p, p]sp(2n) is generated by the

following polynomials

(x, y) ∈ p × p → trP (x, y) , (8.12)

for all noncommutative (i, j)-homogeneous polynomial P ∈ Ki,j[X, Y ], with i ≤ k and

j ≤ ℓ. These polynomials are restrictions to p of su(2n)-invariant polynomials on su(2n)

as, for all P ∈ Ki,j[X, Y ] and all x, y ∈ su(2n),

(x, y) → trP (x, y) (8.13)

defines an element in Ki,j [su(2n), su(2n)]su(2n). This proves lemma 3.3 for simple symmetric

Lie algebras of type AIIn.

We finally consider the symmetric simple Lie algebras of type BDIn,1 for all n > 2.

In this case, we have the symmetric pairs (so(n + 1), so(n))n>2. We introduce the usual

basis of gl(n + 1), i.e. the (Eij)0≤i,j≤n defined as the (n + 1) × (n + 1) matrices with a 1

at the intersection of the i-th row and j-th column and 0 everywhere else. The matrices

Mij = Eij − Eji, 0 ≤ i, j ≤ n, constitute a basis of so(n + 1), and of these, the Mij with

1 ≤ i, j ≤ n generate an so(n) subalgebra. We thus have the symmetric decomposition

so(n+1) = so(n)⊕p where p is the n-dimensional so(n)-module spanned by the Pi = M0,i,

for all 1 ≤ i ≤ n. The Pi transform under the fundamental representation n of so(n), as
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can be checked from

Mij ⊲ Pk = [Mij , Pk] = δjkPi − δikPj , (8.14)

for all 1 ≤ i, j, k ≤ n. This means that we are looking for SO(n)-invariant (k, ℓ)-

homogeneous polynomials on p × p = n × n. For all n > 2, it follows from the first

fundamental theorem for so(n)-invariant polynomials on vectors, [29,30], that such polyno-

mials only depend on the SO(n) scalars built out of the scalar products of their arguments.

Let q be the quadratic form defined on p× p by q(Pi, Pj) = δij for all 1 ≤ i, j ≤ n. For all

p ∈ Kk,ℓ[p, p]h, there exists a polynomial f : K3 → K such that, for all X, Y ∈ p,

p(X, Y ) = f(q(X,X), q(X, Y ), q(Y, Y )) . (8.15)

Now, it is obvious that q is the restriction to p of the map

so(n+ 1) × so(n + 1) → K ; (X, Y ) → −
1

2
tr(XY ) ,

which is so(n + 1)-invariant. This proves the result for symmetric simple Lie algebras of

type BDIn>2,1. It is worth noting that in the case of BDI2,1, there exist obstructions to

the above result which are related to the existence of a further SO(2) invariant, namely

(X, Y ) ∈ p×p → det(X, Y ). As the latter is not the restriction to p of any so(3) invariant,

lemma 3.3 does not hold in this case.

By virtue of the special isomorphisms between lower rank simple Lie algebras, the list

of summands in lemma 3.3 actually includes CII1,1 = BDI4,1 and BDI3,3 = AI4. The latter

respectively correspond to the symmetric decompositions sp(4) = (sp(2) ⊕ sp(2)) ⊕ p and

so(6) = (so(3) ⊕ so(3)) ⊕ p.
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