522 research outputs found

    Does a Song by Any Other Name Still Sound as Sweet: Digital Sampling and Its Copyright Implications

    Get PDF

    The challenges of clinical trials in fragile X syndrome

    Get PDF
    RATIONALE: Advances in understanding the underlying mechanisms of conditions such as fragile X syndrome (FXS) and autism spectrum disorders have revealed heterogeneous populations. Recent trials of novel FXS therapies have highlighted several challenges including subpopulations with possibly differential therapeutic responses, the lack of specific outcome measures capturing the full range of improvements of patients with FXS, and a lack of biomarkers that can track whether a specific mechanism is responsive to a new drug and whether the response correlates with clinical improvement. OBJECTIVES: We review the phenotypic heterogeneity of FXS and the implications for clinical research in FXS and other neurodevelopmental disorders. RESULTS: Residual levels of fragile X mental retardation protein (FMRP) expression explain in part the heterogeneity in the FXS phenotype; studies indicate a correlation with both cognitive and behavioral deficits. However, this does not fully explain the extent of phenotypic variance observed or the variability of drug response. Post hoc analyses of studies involving the selective mGluR5 antagonist mavoglurant and the GABAB agonist arbaclofen have uncovered significant therapeutic responses following patient stratification according to FMR1 promoter methylation patterns or baseline severity of social withdrawal, respectively. Future studies designed to quantify disease modification will need to develop new strategies to track changes effectively over time and in multiple symptom domains. CONCLUSION: Appropriate selection of patients and outcome measures is central to optimizing future clinical investigations of these complex disorders

    A pilot open label, single dose trial of fenobam in adults with fragile X syndrome

    Get PDF
    ObjectiveA pilot open label, single dose trial of fenobam, an mGluR5 antagonist, was conducted to provide an initial evaluation of safety and pharmacokinetics in adult males and females with fragile X syndrome (FXS).MethodsTwelve subjects, recruited from two fragile X clinics, received a single oral dose of 50-150 mg of fenobam. Blood for pharmacokinetic testing, vital signs and side effect screening was obtained at baseline and numerous time points for 6 h after dosing. Outcome measures included prepulse inhibition (PPI) and a continuous performance test (CPT) obtained before and after dosing to explore the effects of fenobam on core phenotypic measures of sensory gating, attention and inhibition.ResultsThere were no significant adverse reactions to fenobam administration. Pharmacokinetic analysis showed that fenobam concentrations were dose dependent but variable, with mean (SEM) peak values of 39.7 (18.4) ng/ml at 180 min after the 150 mg dose. PPI met a response criterion of an improvement of at least 20% over baseline in 6 of 12 individuals (4/6 males and 2/6 females). The CPT did not display improvement with treatment due to ceiling effects.ConclusionsClinically significant adverse effects were not identified in this study of single dose fenobam across the range of dosages utilised. The positive effects seen in animal models of FXS treated with fenobam or other mGluR5 antagonists, the apparent lack of clinically significant adverse effects, and the potential beneficial clinical effects seen in this pilot trial support further study of the compound in adults with FXS

    Language processing skills linked to FMR1 variation: A study of gaze-language coordination during rapid automatized naming among women with the FMR1 premutation

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.The FMR1 premutation (PM) is relatively common in the general population. Evidence suggests that PM carriers may exhibit subtle differences in specific cognitive and language abilities. This study examined potential mechanisms underlying such differences through the study of gaze and language coordination during a language processing task (rapid automatized naming; RAN) among female carriers of the FMR1 PM. RAN taps a complex set of underlying neuropsychological mechanisms, with breakdowns implicating processing disruptions in fundamental skills that support higher order language and executive functions, making RAN (and analysis of gaze/language coordination during RAN) a potentially powerful paradigm for revealing the phenotypic expression of the FMR1 PM. Forty-eight PM carriers and 56 controls completed RAN on an eye tracker, where they serially named arrays of numbers, letters, colors, and objects. Findings revealed a pattern of inefficient language processing in the PM group, including a greater number of eye fixations (namely, visual regressions) and reduced eye-voice span (i.e., the eyes’ lead over the voice) relative to controls. Differences were driven by performance in the latter half of the RAN arrays, when working memory and processing load are the greatest, implicating executive skills. RAN deficits were associated with broader social-communicative difficulties among PM carriers, and with FMR1-related molecular genetic variation (higher CGG repeat length, lower activation ratio, and increased levels of the fragile X mental retardation protein; FMRP). Findings contribute to an understanding of the neurocognitive profile of PM carriers and indicate specific gene-behavior associations that implicate the role of the FMR1 gene in language-related processes.NIH R01DC010191NIH R01MH091131NIH P30 HD0311

    The Cyclic AMP Cascade Is Altered in the Fragile X Nervous System

    Get PDF
    Fragile X syndrome (FX), the most common heritable cause of mental retardation and autism, is a developmental disorder characterized by physical, cognitive, and behavioral deficits. FX results from a trinucleotide expansion mutation in the fmr1 gene that reduces levels of fragile X mental retardation protein (FMRP). Although research efforts have focused on FMRP's impact on mGluR signaling, how the loss of FMRP leads to the individual symptoms of FX is not known. Previous studies on human FX blood cells revealed alterations in the cyclic adenosine 3′, 5′-monophosphate (cAMP) cascade. We tested the hypothesis that cAMP signaling is altered in the FX nervous system using three different model systems. Induced levels of cAMP in platelets and in brains of fmr1 knockout mice are substantially reduced. Cyclic AMP induction is also significantly reduced in human FX neural cells. Furthermore, cAMP production is decreased in the heads of FX Drosophila and this defect can be rescued by reintroduction of the dfmr gene. Our results indicate that a robust defect in cAMP production in FX is conserved across species and suggest that cAMP metabolism may serve as a useful biomarker in the human disease population. Reduced cAMP induction has implications for the underlying causes of FX and autism spectrum disorders. Pharmacological agents known to modulate the cAMP cascade may be therapeutic in FX patients and can be tested in these models, thus supplementing current efforts centered on mGluR signaling

    Electron-Transfer from H-2 and Ar to Stored Multiply Charged Argon Ions Produced by Synchrotron Radiation

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/The rate coefficients for electron transfer from Ar and H-2 to Ar(q+) ions (3 less-than-or-equal-to q less-than-or-equal-to 6) have been measured using an ion-storage technique in a Penning ion trap. The ions were produced in the trap by K-shell photoionization of Ar atoms, using broadband synchrotron x-ray radiation. K-electron removal resulted in vacancy cascading, yielding a distribution of argon-ion charge states peaked near Ar4+. The stored ion gas had an initial temperature near 480 K. The basic data determining the rate coefficients k(Ar(q+)) are the storage time constants of each charge state in the trap, in the presence of a measured pressure of target gas. The results of the measurements (in units of 10(-9) cm3 s-1) are k(Ar3+, H-2) = 4.3(0.7), k(Ar3+, Ar) = 1.6(0.2), k(Ar4+, H-2) = 5.2(0.6), k(Ar4+, Ar) = 2.5(0.3), k(Ar5+, H-2) = 5.9(0.7), k(Ar5+, Ar) = 2.9(0.3), k(Ar6+, H-2) = 8.5(l.2), and k(Ar6+, Ar) = 2.5(0.3)

    Targeted treatments for fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is the most common identifiable genetic cause of intellectual disability and autistic spectrum disorders (ASD), with up to 50% of males and some females with FXS meeting criteria for ASD. Autistic features are present in a very high percent of individuals with FXS, even those who do not meet full criteria for ASD. Recent major advances have been made in the understanding of the neurobiology and functions of FMRP, the FMR1 (fragile X mental retardation 1) gene product, which is absent or reduced in FXS, largely based on work in the fmr1 knockout mouse model. FXS has emerged as a disorder of synaptic plasticity associated with abnormalities of long-term depression and long-term potentiation and immature dendritic spine architecture, related to the dysregulation of dendritic translation typically activated by group I mGluR and other receptors. This work has led to efforts to develop treatments for FXS with neuroactive molecules targeted to the dysregulated translational pathway. These agents have been shown to rescue molecular, spine, and behavioral phenotypes in the FXS mouse model at multiple stages of development. Clinical trials are underway to translate findings in animal models of FXS to humans, raising complex issues about trial design and outcome measures to assess cognitive change that might be associated with treatment. Genes known to be causes of ASD interact with the translational pathway defective in FXS, and it has been hypothesized that there will be substantial overlap in molecular pathways and mechanisms of synaptic dysfunction between FXS and ASD. Therefore, targeted treatments developed for FXS may also target subgroups of ASD, and clinical trials in FXS may serve as a model for the development of clinical trial strategies for ASD and other cognitive disorders

    Reversal of Fragile X Phenotypes by Manipulation of AβPP/Aβ Levels in Fmr1KO Mice

    Get PDF
    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39–43 amino acid peptide mis-expressed in Alzheimer's disease (AD) and Down syndrome (DS). Aβ is over-expressed in the brain of Fmr1KO mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS), anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD) in Fmr1KO mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ1–42 was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy
    corecore