8 research outputs found

    Updatable Oblivious Key Management for Storage Systems

    Get PDF
    We introduce Oblivious Key Management Systems (KMS) as a more secure alternative to traditional wrapping-based KMS that form the backbone of key management in large-scale data storage deployments. The new system, that builds on Oblivious Pseudorandom Functions (OPRF), hides keys and object identifiers from the KMS, offers unconditional security for key transport, provides key verifiability, reduces storage, and more. Further, we show how to provide all these features in a distributed threshold implementation that enhances protection against server compromise. We extend this system with updatable encryption capability that supports key updates (known as key rotation) so that upon the periodic change of OPRF keys by the KMS server, a very efficient update procedure allows a client of the KMS service to non-interactively update all its encrypted data to be decryptable only by the new key. This enhances security with forward and post-compromise security, namely, security against future and past compromises, respectively, of the client\u27s OPRF keys held by the KMS. Additionally, and in contrast to traditional KMS, our solution supports public key encryption and dispenses with any interaction with the KMS for data encryption (only decryption by the client requires such communication). Our solutions build on recent work on updatable encryption but with significant enhancements applicable to the remote KMS setting. In addition to the critical security improvements, our designs are highly efficient and ready for use in practice. We report on experimental implementation and performance

    Key-Homomorphic Pseudorandom Functions from LWE with a Small Modulus

    Get PDF
    Pseudorandom functions (PRFs) are fundamental objects in cryptography that play a central role in symmetric-key cryptography. Although PRFs can be constructed from one-way functions generically, these black-box constructions are usually inefficient and require deep circuits to evaluate compared to direct PRF constructions that rely on specific algebraic assumptions. From lattices, one can directly construct PRFs from the Learning with Errors (LWE) assumption (or its ring variant) using the result of Banerjee, Peikert, and Rosen (Eurocrypt 2012) and its subsequent works. However, all existing PRFs in this line of work rely on the hardness of the LWE problem where the associated modulus is super-polynomial in the security parameter. In this work, we provide two new PRF constructions from the LWE problem that each focuses on either minimizing the depth of its evaluation circuit or providing key-homomorphism while relying on the hardness of the LWE problem with either a polynomial modulus or nearly polynomial modulus. Along the way, we introduce a new variant of the LWE problem called the Learning with Rounding and Errors (LWRE) problem. We show that for certain settings of parameters, the LWRE problem is as hard as the LWE problem. We then show that the hardness of the LWRE problem naturally induces a pseudorandom synthesizer that can be used to construct a low-depth PRF. The techniques that we introduce to study the LWRE problem can then be used to derive variants of existing key-homomorphic PRFs whose security can be reduced from the hardness of the LWE problem with a much smaller modulus

    Fast and Secure Updatable Encryption

    No full text
    Updatable encryption allows a client to outsource ciphertexts to some untrusted server and periodically rotate the encryption key. The server can update ciphertexts from an old key to a new key with the help of an update token, received from the client, which should not reveal anything about plaintexts to an adversary. We provide a new and highly efficient suite of updatable encryption schemes that we collectively call SHINE. In the variant designed for short messages, ciphertext generation consists of applying one permutation and one exponentiation (per message block), while updating ciphertexts requires just one exponentiation. Variants for longer messages provide much stronger security guarantees than prior work that has comparable efficiency. We present a new confidentiality notion for updatable encryption schemes that implies prior notions. We prove that SHINE is secure under our new confidentiality definition while also providing ciphertext integrity
    corecore