12 research outputs found

    Influence of Strain Rate Sensitivity on Cube Texture Evolution in Aluminium Alloys

    Get PDF

    Crash and Durability of Aluminum and Mixed Steel Aluminum Joints Made by Electromagnetic Pulse Welding

    Get PDF
    In this paper, results of the research project “Failure behavior of mixed weld joints under multi-axial crash-like and cyclic loads on the example of EMPT sheet metal joints” funded by the German Federal Ministry for Economic Affairs and Energy are presented and discussed. Aluminum and mixed aluminum-steel joints were prepared using electromagnetic pulse technology (EMPT) at PSTproducts GmbH (PST). Investigations on coupon samples were performed under oscillating and monotone (crash) loadings until failure. Based on the coupon tests, parameters for modelling the crash performance were derived, using both a detailed continuum model and an application driven simplified FE-model. The derived FE-modelling concept for crash behavior was validated by comparison of component tests and simulations Durability analysis of the joint specimens was performed combined with FEM analysis, applying the notch stress concept. For the notch stress concept a notch model with a reference radius of rref=0.05 mm was used for the FE-simulations. The endurable notch stresses were compared to reference S-N curves derived for conventional welded samples. The EMPT-results fit well in the scatter band of the conventional laser-welded joints. This is the verification that the notch stress concept can be successfully applied also for EMPT joints

    Influence of strain rate on the beginning of instable deformation and failure behavior from shear to multiaxial loading for a DP1000

    No full text
    The influence of strain rate on the beginning of instable deformation and failure behavior of a DP1000 steel is investigated for a wide range of stress states with experimental methods. Therefore quasistatic and high speed tests have been performed for four different loading situations, shear loading, uniaxial tension loading, plane strain loading and equi-biaxial tension loading. The deformation of the specimens up to fracture in the highly deformed zones has been captured with high speed video recording and evaluated with digital image correlation (DIC). The beginning of instable local deformation behavior designated as beginning of instability has been detected with one uniform procedure. For tensile dominated loading situations the development of the local thinning rate in the necking zone on the surface of the specimen has been analyzed. For the determination of the beginning of shear instability, the development of the major and minor strain rate in the shear zone has been investigated. The difference between strain at beginning of instability and failure strain, determined as the largest strain at the location of failure prior to fracture, gives hints to the materials crash performance under the investigated stress state. The largest difference has been observed for uniaxial tension loading and increases with increasing strain rate. However, under dynamic shear loading, fracture occurs without previous instability and at significant lower strains than under quasistatic shear loading. The proposed evaluation procedure to determine the beginning of instability for a wide range of stress states including shear loading is applied to the investigated DP1000 and strain rate effects are discussed

    Influence of strain rate on deformation and failure behavior of sheet metals under shear loading

    No full text
    In order to improve the reliability of deformation and failure prediction of automotive lightweight constructions in real crash situations, appropriate input data for crash simulations are necessary which represent the material behavior under high strain rates and complex multiaxial loading situations. Especially under shear dominated loading failure is difficult to reach and there is still a lack of information concerning the strain rate dependency under these loading conditions. Therefore an experimental procedure for strain rate dependent shear tension tests on sheet metals was developed which bases on asymmetrical notched shear tensile specimen geometries without surface processing. The specimen design of the shear zone was optimized by varying the shear length dependent on the sheet thickness and the notch position dependent on material data of uniaxial tension tests. For different advanced high strength steels (AHSS) numerical and experimental investigations were performed regarding the evolution of load paths in the shear zone and near the notch region as well as the failure location. Based on these experimental results and related numerical simulations recommendations are derived for an optimized design of asymmetrical notched shear tensile specimens. These recommendations are dependent on the sheet thickness and on material properties. The experiments should be carried out comparable to strain rate dependent flat tension tests with an appropriate mounting. The suggested specimen design procedure is validated by experiments on steels in a wide range of strength as well as on exemplary batches of aluminum and copper. The shear characterization for AHSS results in large strain values in the shear zone up to failure under quasi-static loading with a significant negative strain rate effect. These experimental results of improved strain rate dependent shear characterization can be used for enhanced failure prediction in the future

    Dehnratenabhängiges Verformungs- und Versagensverhalten von dünnen Blechen unter Scherbelastung

    No full text
    In diesem Forschungsvorhaben wurden neun verschiedene Stahlblechwerkstoffe bzw. –varianten und zwei exemplarische zusätzliche Werkstoffe, ein Aluminium und ein Kupfer, bezüglich des Schubverhaltens untersucht. Das Vorhaben wurde in Kooperation von der Forschungsvereinigung Automobil-technik e.V. (FAT) mit der Forschungsvereinigung Stahlanwendung e. V. (FOSTA) am Fraunhofer-Institut für Werkstoffmechanik IWM durchgeführt. Zu diesem Zweck wurde eine optimierte parametrisierte Probengeometrie entwickelt. Durch eine Reihe von Kriterien wurde die finale Gestaltung der Probe deutlich eingeschränkt. Diese Kriterien wurden in enger Abstimmung mit dem Projektbegleitendem Ausschuss (PbA) gewichtet. Dadurch wurden die im Antrag formulierten Kriterien etwas in der Gewichtung geändert. Auch einige Arbeitspakete wurden in Abstimmung mit dem PbA angepasst. Die umfangreichste Änderung betraf die Validierungsprobe Bauteil. Hier wurde der Fokus auf den Schubversuch verstärkt, da sich zeigte, dass das Validierungsbauteil in einigen Versuchen als wenig zielführend herausgestellt hat. Am Ende des Projekts wurde eine validierte Gestaltungsempfehlung für die Scherprobe bereitgestellt, die eine deutliche Verbesserung der Schubcharakterisierung bei verschiedenen Dehnraten ermöglicht. Das Ziel des Vorhabens wurde erreicht

    Dynamic micro testing over more than 5 decades of strain rates

    No full text
    Based on the combined experience in micro testing [1] and testing under crash and impact loads [2] at Fraunhofer Institute for Mechanics of Materials IWM, a new testing system was developed for micro sample testing over a wide range of strain rates. The aim was to realize a testing facility allowing the investigation at small sample sizes, taken out of sheet materials or components for local material characterization over a large range of strain rates [3]. The first application and reference testing series was performed at a dual phase steel HCT490X rolled to a thickness of 0.56 mm with sample main dimensions of 3.5 mm x 3.5 mm. These tests were performed in parallel with mini tensile samples (Fig. 1, right) at a conventional fast servo hydraulic testing machine (VeryHighSpeed, VHS) at com parable strain rates, ranging from 0.001 s-1 up to 1000 s-1 [3] These parallel testing series showed up the benefit of small micro samples for strain rate dependent investigations. The micro sample tests showed comparable stress strain reactions with significant smaller oscillations in the force signal than the mini sample test. For this strain rate range the oscillations in the force signals were significantly improved compared to the conventional tests. For ongoing tests the samples were prepared out of different polymer materials including long fiber reinforced thermoplastics (LFT). These tests focus on the investigation in homogenous local material reaction to different loading velocities. For these tests, the sample preparation was already a challenge that was overcome using micro water jet cutting with a well-defined process chain and sample finishing. The test series are subject of actual investigations. In this paper an overview of the actual status of dynamic micro testing is given

    Charakterisierung hochfester Karosserieblechwerkstoffe unter quasistatischer und crashartiger Scherbelastung

    No full text
    Scherbelastung ist für die Crashsicherheit ein besonders kritischer Lastfall, da Versagen ohne vorherige Einschnürung eintritt und die kritischen Dehnungen in der Scherzone bei verschiedenen metallischen Werkstoffen mit zunehmender Dehnrate deutlich kleiner werden. Für eine dehnratenabhängige Schercharakterisierung wurden in dieser Arbeit für einen Dualphasenstahl DP1000 und einen mikrolegierten Stahl ZStE340 numerische und experimentelle Untersuchungen an Schrägkerb-Scherzug-Proben durchgeführt. Durch Variation der Geometrieparameter Scherlänge, Kerbradius und Kerbversatz wurde werkstoffspezifisch eine verbesserte Scherprobengeometrie mit annähernd proportionalen Scherdehnungspfaden, hohen Scherzonendehnungen bis Bruch und einer fraktografisch nachgewiesenen Scherbruchfläche entworfen. Unter quasistatischer Belastung wurden in der Scherzone kurz vor Bruch hohe Vergleichsdehnungen bis zu 0,9 für den DP1000 und bis zu 1,6 für den ZStE340 mit Grauwertkorrelation ausgewertet, unter Crashbelastung dagegen um bis zu 40 % niedrigere Dehnungen. Damit ist eine Verbesserung der dehnratenabhängigen Schercharakterisierung dünner Blechwerkstoffe erreicht

    Rateneffekte und Skaleneffekte bei der Werkstoffprüfung auf der Mikroskala

    No full text
    Kenntnisse der lokalen Werkstoffeigenschaften sind eine grundlegende Voraussetzung der erfolgreichen Umsetzung der Digitalisierung der Werkstoffe. Im Belastungsbereich verschiedener Dehnraten liegen fast keine durchgehenden transiente experimentellen Daten lokaler Werkstoffeigenschaften vor. Um diese Lücke zu schließen wurde eine variabel dynamische Mikroprüfung entwickelt. Die Versuchsanlage IWM DynMicro wurde an 0.5 mm dickem Dualphasenstahl HCT490X erprobt und durch Vergleichsversuche mit größeren Proben an einer konventionellen Schnellzerreißmaschine verifiziert. Untersuchungen die nur mit Mikroproben möglich sind werden an dem Beispiel PP LGF 30 dargestellt. An diesem Werkstoff wird gezeigt, wie lokale Effekte das homogenisierte Verhalten einerseits beeinflussen aber auch davon abweichen
    corecore