349 research outputs found

    Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density

    Get PDF
    We investigate Lefschetz thimble structure of the complexified path-integration in the one-dimensional lattice massive Thirring model with finite chemical potential. The lattice model is formulated with staggered fermions and a compact auxiliary vector boson (a link field), and the whole set of the critical points (the complex saddle points) are sorted out, where each critical point turns out to be in a one-to-one correspondence with a singular point of the effective action (or a zero point of the fermion determinant). For a subset of critical point solutions in the uniform-field subspace, we examine the upward and downward cycles and the Stokes phenomenon with varying the chemical potential, and we identify the intersection numbers to determine the thimbles contributing to the path-integration of the partition function. We show that the original integration path becomes equivalent to a single Lefschetz thimble at small and large chemical potentials, while in the crossover region multi thimbles must contribute to the path integration. Finally, reducing the model to a uniform field space, we study the relative importance of multiple thimble contributions and their behavior toward continuum and low-temperature limits quantitatively, and see how the rapid crossover behavior is recovered by adding the multi thimble contributions at low temperatures. Those findings will be useful for performing Monte-Carlo simulations on the Lefschetz thimbles.Comment: 32 pages, 14 figures (typo etc. corrected

    Four-dimensional lattice chiral gauge theories with anomalous fermion content

    Full text link
    In continuum field theory, it has been discussed that chiral gauge theories with Weyl fermions in anomalous gauge representations (anomalous gauge theories) can consistently be quantized, provided that some of gauge bosons are permitted to acquire mass. Such theories in four dimensions are inevitablly non-renormalizable and must be regarded as a low-energy effective theory with a finite ultraviolet (UV) cutoff. In this paper, we present a lattice framework which enables one to study such theories in a non-perturbative level. By introducing bare mass terms of gauge bosons that impose ``smoothness'' on the link field, we explicitly construct a consistent fermion integration measure in a lattice formulation based on the Ginsparg-Wilson (GW) relation. This framework may be used to determine in a non-perturbative level an upper bound on the UV cutoff in low-energy effective theories with anomalous fermion content. By further introducing the St\"uckelberg or Wess-Zumino (WZ) scalar field, this framework provides also a lattice definition of a non-linear sigma model with the Wess-Zumino-Witten (WZW) term.Comment: 18 pages, the final version to appear in JHE

    Schroedinger functional formalism with domain-wall fermion

    Get PDF
    Finite volume renormalization scheme is one of the most fascinating scheme for non-perturbative renormalization on lattice. By using the step scaling function one can follow running of renormalized quantities with reasonable cost. It has been established the Schroedinger functional is very convenient to define a field theory in a finite volume for the renormalization scheme. The Schroedinger functional, which is characterized by a Dirichlet boundary condition in temporal direction, is well defined and works well for the Yang-Mills theory and QCD with the Wilson fermion. However one easily runs into difficulties if one sets the same sort of the Dirichlet boundary condition for the overlap Dirac operator or the domain-wall fermion. In this paper we propose an orbifolding projection procedure to impose the Schroedinger functional Dirichlet boundary condition on the domain-wall fermion.Comment: 32 page

    Exact Chiral Symmetry on the Lattice

    Get PDF
    Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.Comment: 30 pages, LaTeX, reference adde

    First-order restoration of SU(Nf) x SU(Nf) chiral symmetry with large Nf and Electroweak phase transition

    Full text link
    It has been argued by Pisarski and Wilczek that finite temperature restoration of the chiral symmetry SU(Nf) x SU(Nf) is first-order for Nf >=3. This type of chiral symmetry with a large Nf may appear in the Higgs sector if one considers models such as walking technicolor theories. We examine the first-order restoration of the chiral symmetry from the point of view of the electroweak phase transition. The strength of the transition is estimated in SU(2) x U(1) gauged linear sigma model by means of the finite temperature effective potential at one-loop with the ring improvement. Even if the mass of the neutral scalar boson corresponding to the Higgs boson is larger than 114 GeV, the first-order transition can be strong enough for the electroweak baryogenesis, as long as the extra massive scalar bosons (required for the linear realization) are kept heavier than the neutral scalar boson. Explicit symmetry breaking terms reduce the strength of the first-order transition, but the transition can remain strongly first-order even when the masses of pseudo Nambu-Goldstone bosons become as large as the current lower bound of direct search experiments.Comment: 18 pages, 18 figures, minor corrections, references adde

    A practical implementation of the Overlap-Dirac operator

    Full text link
    A practical implementation of the Overlap-Dirac operator 1+γ5ϵ(H)2{{1+\gamma_5\epsilon(H)}\over 2} is presented. The implementation exploits the sparseness of HH and does not require full storage. A simple application to parity invariant three dimensional SU(2) gauge theory is carried out to establish that zero modes related to topology are exactly reproduced on the lattice.Comment: Y-axis label in figure correcte
    • …
    corecore