21 research outputs found

    Effects of Aluminum Oxide Nanoparticles on the Growth, Development, and microRNA Expression of Tobacco (Nicotiana tabacum)

    Get PDF
    Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA) are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al2O3 nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum) plants (an important cash crop as well as a model organism) to 0%, 0.1%, 0.5%, and 1% Al2O3 nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al2O3 nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al2O3 nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al2O3 nanoparticles in the environment

    Migraine days and body mass index (BMI) in a series of Japanese migraineurs

    No full text

    Changes in rupture formation and zonary region stained with evans blue during the recovery process from aluminum toxicity in the pea root apex

    No full text
    We investigated how the pea (Pisum sativum cv. Harunoka) root, upon return to an Al-free condition, recovers from injury caused by exposure to Al. Elongation and re-elongation of the root during the recovery process from Al injury occurred only in the apical 5 mm region of the pea root. With the model system of the pea root for recovery from Al injury, images of the root characterized by zonal staining with Evans blue showed the existence of two regions in the root apex consisting of rupture and zonary stained regions. Ruptures enlarged by increase in their depth but without widening of the intervals between zonary stained regions in the roots treated with Al continuously. On the other hand, intervals of the zonary stained regions were widened due to reelongation of the root and were narrow in the rupture region in the recovery root
    corecore