398 research outputs found

    Statistical mechanical aspects of joint source-channel coding

    Full text link
    An MN-Gallager Code over Galois fields, qq, based on the Dynamical Block Posterior probabilities (DBP) for messages with a given set of autocorrelations is presented with the following main results: (a) for a binary symmetric channel the threshold, fcf_c, is extrapolated for infinite messages using the scaling relation for the median convergence time, tmed1/(fcf)t_{med} \propto 1/(f_c-f); (b) a degradation in the threshold is observed as the correlations are enhanced; (c) for a given set of autocorrelations the performance is enhanced as qq is increased; (d) the efficiency of the DBP joint source-channel coding is slightly better than the standard gzip compression method; (e) for a given entropy, the performance of the DBP algorithm is a function of the decay of the correlation function over large distances.Comment: 6 page

    Seasonal phenology of the diamondback moth, Plutella xylostella (L.), (Lepidoptera: Plutellidae), and its parasitoids on canola, Brassica napus (L.), in Gauteng province, South Africa

    Get PDF
    Canola, Brassica napus L. (Brassicaceae), is a relativelynewcrop in SouthAfrica. Several insect pests, including diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), that attack cruciferous vegetables, also attack canola. The aims of this study were to determine the seasonal phenology of P. xylostella populations on canola, and the composition, relative abundance and seasonal phenology of parasitoids attacking P. xylostella on this crop. Diamondback moth adults were monitored with synthetic sex-pheromone traps. Larval and pupal populations of P. xylostella were monitored weekly for three years at Bapsfontein and Rietondale in Gauteng province. Samples of diamondback moth larvae, pupae and parasitoid cocoons were collected and transported to the laboratory. Parasitoids that emerged were identified and their incidence recorded. Berlese funnel catches were used as an indicator of the accuracy of the visual counts. The infestation level of P. xylostella larvae was high from May to August at Rietondale, while at Bapsfontein it was high from September to December. There was a high correlation (r=0.79, P<0.001) between pheromone trap catches and subsequent larval infestations at Bapsfontein. The pheromone traps indicated that diamondback moth adults were present throughout the year. Berlese funnel catches indicated that a large number of larvae, especially first instars, were overlooked during visual plant scouting. Parasitism rates were often very high, reaching 90–100 %. The following parasitoids were recorded from field-collected P. xylostella: the larval parasitoids Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae) and Apanteles halfordi Ullyett (Hymenoptera: Braconidae), the larval/pupal parasitoids Diadegma mollipla (Holmgren) (Hymenoptera: Ichneumonidae) and Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae), the pupal parasitoid Diadromus collaris (Gravenhorst) (Hymenoptera: Ichneumonidae), and the hyperparasitoids Mesochorus sp. (Hymenoptera: Ichneumonidae) and Pteromalus sp. (Hymenoptera: Pteromalidae). Cotesia plutellae was the most abundant parasitoid throughout the study

    A dynamical symmetry triad in high-harmonic generation revealed by attosecond recollision control

    Get PDF
    A key element of optical spectroscopy is the link between observable selection rules and the underlying symmetries of an investigated physical system. Typically, selection rules directly relate to the sample properties probed by light, yielding information on crystalline structure or chirality, for example. Considering light-matter coupling more broadly may extend the scope of detectable symmetries, to also include those directly arising from the interaction. In this letter, we experimentally demonstrate an emerging class of symmetries in the electromagnetic field emitted by a strongly driven atomic system. Specifically, generating high-harmonic radiation with attosecond-controlled two-color fields, we find different sets of allowed and forbidden harmonic orders. Generalizing symmetry considerations of circularly polarized high-harmonic generation, we interpret these selection rules as a complete triad of dynamical symmetries. We expect such emergent symmetries also for multi-atomic and condensed-matter systems, encoded in the spectral and spatial features of the radiation field. Notably, the observed phenomenon gives robust access to chiral processes with few-attosecond time precision

    Interlocked attosecond pulse trains in slightly bi-elliptical high harmonic generation

    Get PDF
    The ellipticity of high harmonics driven by bi-chromatic (e.g. w - 2w) fully tuned by varying the polarization of the pump components. In order to start revealing the underlying mechanism of this control, we explore a relatively simple regime of this scheme that still gives rise to full control over the harmonics ellipticities. In this regime, the pumps are only slightly elliptical and the high harmonic radiation consists of two (different) interlocked attosecond pulse trains (APTs). We formulate a semi-analytic model that maps the high harmonic ellipticity to properties of the APTs harmonic decompositions. Utilizing this model, we reconstruct these APTs variables from measurements of the high harmonics ellipticities. This ellipticity-resolved spectroscopy of interlocked APTs may be useful for ultrafast probing of chiral degrees of freedom

    High-dimensional coherent one-way quantum key distribution

    Full text link
    High-dimensional quantum key distribution (QKD) offers secure communication, with secure key rates that surpass those achievable by QKD protocols utilizing two-dimensional encoding. However, existing high-dimensional QKD protocols require additional experimental resources, such as multiport interferometers and multiple detectors, thus raising the cost of practical high-dimensional systems and limiting their use. Here, we present and analyze a novel protocol for arbitrary-dimensional QKD, that requires only the hardware of a standard two-dimensional system. We provide security proofs against individual attacks and coherent attacks, setting an upper and lower bound on the secure key rates. Then, we test the new high-dimensional protocol in a standard two-dimensional QKD system over a 40 km fiber link. The new protocol yields a two-fold enhancement of the secure key rate compared to the standard two-dimensional coherent one-way protocol, without introducing any hardware modifications to the system. This work, therefore, holds great potential to enhance the performance of already deployed time-bin QKD systems through a software update alone. Furthermore, its applications extend across different encoding schemes of QKD qudits

    Nanoscale magnetic imaging using circularly polarized high-harmonic radiation

    Get PDF
    This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the exceptional coherence of high harmonics, this approach will facilitate quantitative, element-specific, and spatially resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism

    A fixed-point property of logic-based bargaining solution

    Get PDF
    Abstract. This paper presents a logic-based bargaining solution based on Zhang and Zhang’s framework. It is shown that if the demand sets of players are logically closed, the solution satisfies a fixed-point property, which says that the outcome of bargaining is the result of mutual belief revision. The result is interesting not only because it presents a desirable logical property of bargaining solution but also establishes a link between bargaining theory and multi-agent belief revision.

    Implications of large dimuon CP asymmetry in B_{d,s} decays on minimal flavor violation with low tan beta

    Full text link
    The D0 collaboration has recently announced evidence for a dimuon CP asymmetry in B_{d,s} decays of order one percent. If confirmed, this asymmetry requires new physics. We argue that for minimally flavor violating (MFV) new physics, and at low tan beta=v_u/v_d, there are only two four-quark operators (Q_{2,3}) that can provide the required CP violating effect. The scale of such new physics must lie below 260 GeV sqrt{tan beta}. The effect is universal in the B_s and B_d systems, leading to S_{psi K}~sin(2beta)-0.15 and S_{psi phi}~0.25. The effects on epsilon_K and on electric dipole moments are negligible. The most plausible mechanism is tree-level scalar exchange. MFV supersymmetry with low tan beta will be excluded. Finally, we explain how a pattern of deviations from the Standard Model predictions for S_{psi phi}, S_{psi K} and epsilon_K can be used to test MFV and, if MFV holds, to probe its structure in detail.Comment: 11 pages. v2: References adde

    Scalar-mediated ttˉt\bar t forward-backward asymmetry

    Full text link
    A large forward-backward asymmetry in ttˉt\bar t production, for large invariant mass of the ttˉt\bar t system, has been recently observed by the CDF collaboration. Among the scalar mediated mechanisms that can explain such a large asymmetry, only the t-channel exchange of a color-singlet weak-doublet scalar is consistent with both differential and integrated ttˉt\bar t cross section measurements. Constraints from flavor changing processes dictate a very specific structure for the Yukawa couplings of such a new scalar. No sizable deviation in the differential or integrated ttˉt\bar t production cross section is expected at the LHC.Comment: 22 pages, 1 figure and 2 tables. v2: Corrected Eqs.(50,51,74), adapted Fig.1, Tab.1 and relevant discussions. Extended discussion of top decay and single to

    CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments

    Full text link
    We study electroweak baryogenesis and electric dipole moments in the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM. Significant qualitative and quantitative differences from MSSM baryogenesis arise due to the presence of new CP-violating phases and to the relaxation of constraints on the supersymmetric spectrum (in particular, both stops can be light). We find: (1) spontaneous baryogenesis, driven by a change in the phase of the Higgs vevs across the bubble wall, becomes possible; (2) the top and stop CP-violating sources can become effective; (3) baryogenesis is viable in larger parts of parameter space, alleviating the well-known fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole moments should be measured if experimental sensitivities are improved by about one order of magnitude.Comment: 33 pages, 6 figure
    corecore