11 research outputs found

    Metabolic profiling of HepG2 cells incubated with S(−) and R(+) enantiomers of anti-coagulating drug warfarin

    Get PDF
    Warfarin is a commonly prescribed oral anticoagulant with narrow therapeutic index. It achieves anti-coagulating effects by interfering with the vitamin K cycle. Warfarin has two enantiomers, S(−) and R(+) and undergoes stereoselective metabolism, with the S(−) enantiomer being more effective. We reported the intracellular metabolic profile in HepG2 cells incubated with S(−) and R(+) warfarin by GCMS. Chemometric method PCA was applied to analyze the individual samples. A total of 80 metabolites which belong to different categories were identified. Two batches of experiments (with and without the presence of vitamin K) were designed. In samples incubated with S(−) and R(+) warfarin, glucuronic acid showed significantly decreased in cells incubated with R(+) warfarin but not in those incubated with S(−) warfarin. It may partially explain the lower bio-activity of R(+) warfarin. And arachidonic acid showed increased in cells incubated with S(−) warfarin but not in those incubated with R(+) warfarin. In addition, a number of small molecules involved in γ-glutamyl cycle displayed ratio variations. Intracellular glutathione detection further validated the results. Taken together, our findings provided molecular evidence on a comprehensive metabolic profile on warfarin-cell interaction which may shed new lights on future improvement of warfarin therapy

    Optimization of conditions in random amplified polymorphic DNA (RAPD) reaction for determination of plant pathogenic bacteria

    No full text
    Random Amplified Polymorphic DNA (RAPD) technique is a powerful tool for genetic studies. It can be also applied for determination of bacterial species. The goal of this work was to optimize conditions for RAPD reaction, and to obtain RAPD patterns specific for some plant-associated bacteria. RAPD could be a good choice for screening and preliminary bacterial determination. Application of RAPD can determine that some of bacterial species are not reason of infection, and make additional tests for them unnecessary. This can provide time, labor, and as well as money saving, which is important particularly if expensive tests are applied. Optimization of reaction conditions in this work made possible good repeatability of RAPD electrophoretic patterns for particular bacterial species
    corecore