31 research outputs found

    The role of spin in the degradation of organic photovoltaics

    Get PDF
    Stability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C60 via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C60 excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices

    Nonlinear optical studies of lead lanthanum borate glass doped with Au nanoparticles

    No full text
    Synthesis, characterization and optical nonlinearity of lead lanthanum borate glass embedded with gold nanoparticles have been investigated. DSC thermogram shows characteristics glass transition temperature at Tg = 775 K. Glasses doped with Au were subjected to heat treatment at 823 K with different annealing time and then, slowly cooled to room temperature show striking ruby color. SAED and TEM analyses have confirmed that f.c.c. Au nanoparticles of ~ 40 nm size are present in these glasses. An absorption peak centered on 563 nm has been observed in heat treated samples, which is attributed to surface plasmon resonance of gold nanoparticles. Nonlinear optical studies with open aperture Z-Scan technique show saturable absorption for heat treated samples at low intensity and reverse saturable absorption in samples without heat treatment at high intensity

    Degradation effects on charge carrier transport in P3HT:PCBM solar cells studied by photo-CELIV and ToF

    No full text
    Oxygen induced degradation is one of the major problems in the field of organic photovoltaics. Photo-degradation impacts on performance of inverted bulk hetero junction poly(3-hexylthiophene) : phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells has been investigated by means of charge extraction by linearly increasing voltage (CELIV) and time of flight (ToF) methods. The irreversible loss in short circuit current (Jsc) can be attributed to a combination of adverse effects such as loss in mobility of the charge carrires, increase in trapping effect and sheilding of electric field by equilibrium carriers upon degradation

    Ultrafast charge dynamics in dilute-donor versus highly intermixed TAPC:c60 organic solar cell blends

    No full text
    Elucidating the interplay between film morphology, photophysics, and device performance of bulk heterojunction (BHJ) organic photovoltaics remains challenging. Here, we use the well-defined morphology of vapor-deposited di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane (TAPC):C60 blends to address charge generation and recombination by transient ultrafast spectroscopy. We gain relevant new insights to the functioning of dilute-donor (5% TAPC) fullerene-based BHJs compared to molecularly intermixed systems (50% TAPC). First, we show that intermolecular charge-transfer (CT) excitons in the C60 clusters of dilute BHJs rapidly localize to Frenkel excitons prior to dissociating at the donor:acceptor interface. Thus, both Frenkel and CT excitons generate photocurrent over the entire fullerene absorption range. Second, we selectively monitor interfacial and bulk C60 clusters via their electro-absorption, demonstrating an energetic gradient that assists free charge generation. Third, we identify a fast (<1 ns) recombination channel, whereby free electrons recombine with trapped holes on isolated TAPC molecules. This can harm the performance of dilute solar cells, unless the electrons are rapidly extracted in efficient devices

    The role of spin in the degradation of organic photovoltaics

    No full text
    Stability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C<sub>60</sub> via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C<sub>60</sub> excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices
    corecore