90 research outputs found

    Discovery and Follow-up of Rotating Radio Transients with the Green Bank and LOFAR Telescopes

    Get PDF
    We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350-MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed {\tt RRATtrap}, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array (LOFAR), yielding improved positions and measurements of their periods, dispersion measures, and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have dispersion measures (DMs) ranging from 15 to 97 pc cm−3^{-3}, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr−1^{-1} at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e. P>200P>200 ms) are preferentially more likely to emit bright single pulses than are faster pulsars (P<200P<200 ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.Comment: 18 pages, 13 figures, 5 tables, published in Ap

    A millisecond pulsar in a stellar triple system

    Full text link
    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses, and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, B1620-26 (with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multi-wavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar (1.4378(13) Msun, where Msun is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15) Msun and 0.4101(3) Msun), as well as the inclinations of the orbits (both approximately 39.2 degrees). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.Comment: 17 pages, 3 figures, 1 table. Published online by Nature on 5 Jan 2014. Extremely minor differences with published version may exis

    The Green Bank Northern Celestial Cap Pulsar Survey - I: Survey Description, Data Analysis, and Initial Results

    Get PDF
    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts (FRBs), at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4,096 channels every 81.92 μs\mu s. This survey will cover the entire sky visible to the Green Bank Telescope (δ>−40∘\delta > -40^\circ, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<<30 pc cm−3\mathrm{pc\,cm^{-3}}) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of −-1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214++5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636++5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 MJM_\mathrm{J}). PSR J0645++5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434++7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816++4510 is an eclipsing MSP in a short-period orbit (8.7 hours) and may have recently completed its spin-up phase.Comment: 18 pages, 10 figures, 5 tables, accepted by Ap

    Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey

    Get PDF
    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4-GHz Pulsar ALFA survey with the Arecibo Observatory with a DM = 557.4 ±\pm 3 pc cm−3^{-3}, pulse width of 3  ±0.53\; \pm 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b=−0.2∘b = -0.2^{\circ}), the burst has three times the maximum Galactic DM expected along this particular line-of-sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.Comment: 9 pages, 3 figures, submitted to Ap

    The Green Bank Northern Celestial Cap Pulsar Survey II: The Discovery and Timing of Ten Pulsars

    Full text link
    We present timing solutions for ten pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program in analysis of drift-scan data. Following discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930−-2301, a pulsar with nulling fraction lower limit of ∼\sim30\% and nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557−-2948 is an isolated, 44 \rm{ms} pulsar that has been partially recycled and is likely a former member of a binary system which was disrupted by a second supernova. The paucity of such so-called `disrupted binary pulsars' (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 \rm{ms} pulsar in a 44 day orbit with a low mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.Comment: 9 pages, 5 figure

    The Green Bank North Celestial Cap Pulsar Survey. IV: Four New Timing Solutions

    Get PDF
    We present timing solutions for four pulsars discovered in the Green Bank Northern Celestial Cap (GBNCC) survey. All four pulsars are isolated with spin periods between 0.26 \,s and 1.84 \,s. PSR J0038−-2501 has a 0.26 \,s period and a period derivative of 7.6×10−19 s s−1{7.6} \times {10}^{-19}\,{\rm s\,s}^{-1}, which is unusually low for isolated pulsars with similar periods. This low period derivative may be simply an extreme value for an isolated pulsar or it could indicate an unusual evolution path for PSR J0038−-2501, such as a disrupted recycled pulsar (DRP) from a binary system or an orphaned central compact object (CCO). Correcting the observed spin-down rate for the Shklovskii effect suggests that this pulsar may have an unusually low space velocity, which is consistent with expectations for DRPs. There is no X-ray emission detected from PSR J0038−-2501 in an archival swift observation, which suggests that it is not a young orphaned CCO. The high dispersion measure of PSR J1949+3426 suggests a distance of 12.3 \,kpc. This distance indicates that PSR J1949+3426 is among the most distant 7% of Galactic field pulsars, and is one of the most luminous pulsars.Comment: 7 pages, 5 figure

    The GBT 350-MHz Drift Scan Pulsar Survey. III. Detection of a magnetic field in the eclipsing material of PSR J2256-1024

    Get PDF
    We present the first measurement of a non-zero magnetic field in the eclipsing material of a black widow pulsar. Black widows are millisecond pulsars which are ablating their companions; therefore they are often proposed as one potential source of isolated millisecond pulsars. PSR J2256-1024 is an eclipsing black widow discovered at radio wavelengths and later also observed in the X-ray and gamma parts of the spectrum. Here we present the radio timing solution for PSR J2256-1024, polarization profiles at 350, 820, and 1500~MHz and an investigation of changes in the polarization profile due to eclipsing material in the system. In the latter we find evidence of Faraday rotation in the linear polarization shortly after eclipse, measuring a rotation measure of 0.44(6) rad per meter squared and a corresponding line-of-sight magnetic field of 3.5(17) mG.Comment: 14 pages, 8 figure

    A Search for Fast Radio Bursts with the GBNCC Pulsar Survey

    Get PDF
    We report on a search for Fast Radio Bursts (FRBs) with the Green Bank Northern Celestial Cap (GBNCC) Pulsar Survey at 350 MHz. Pointings amounting to a total on-sky time of 61 days were searched to a DM of 3000 pc cm−3^{-3} while the rest (23 days; 29% of the total time) were searched to a DM of 500 pc cm−3^{-3}. No FRBs were detected in the pointings observed through May 2016. We estimate a 95% confidence upper limit on the FRB rate of 3.6×1033.6\times 10^3 FRBs sky−1^{-1} day−1^{-1} above a peak flux density of 0.63 Jy at 350 MHz for an intrinsic pulse width of 5 ms. We place constraints on the spectral index α\alpha by running simulations for different astrophysical scenarios and cumulative flux density distributions. The non-detection with GBNCC is consistent with the 1.4-GHz rate reported for the Parkes surveys for α>+0.35\alpha > +0.35 in the absence of scattering and free-free absorption and α>−0.3\alpha > -0.3 in the presence of scattering, for a Euclidean flux distribution. The constraints imply that FRBs exhibit either a flat spectrum or a spectral turnover at frequencies above 400 MHz. These constraints also allow estimation of the number of bursts that can be detected with current and upcoming surveys. We predict that CHIME may detect anywhere from several to ∼\sim50 FRBs a day (depending on model assumptions), making it well suited for interesting constraints on spectral index, the log NN-log SS slope and pulse profile evolution across its bandwidth (400-800 MHz).Comment: 18 pages, 10 figures, Accepted for publication in Ap

    The Green Bank Northern Celestial Cap Pulsar Survey. II. the Discovery and Timing of 10 Pulsars

    Get PDF
    We present timing solutions for 10 pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program during an analysis of drift-scan data. Following the discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high-precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930-2301, a pulsar with a nulling fraction lower limit of ∼30% and a nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557-2948 is an isolated, 44 ms pulsar that has been partially recycled and is likely a former member of a binary system that was disrupted by a second supernova. The paucity of such so-called \ disrupted binary pulsars\ (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 ms pulsar in a 44-day orbit with a low-mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr
    • …
    corecore