37 research outputs found

    Integration of Liquid Biopsy and Pharmacogenomics for Precision Therapy of EGFR Mutant and Resistant Lung Cancers

    Get PDF
    The advent of molecular profiling has revolutionized the treatment of lung cancer by comprehensively delineating the genomic landscape of the epidermal growth factor receptor (EGFR) gene. Drug resistance caused by EGFR mutations and genetic polymorphisms of drug metabolizing enzymes and transporters impedes effective treatment of EGFR mutant and resistant lung cancer. This review appraises current literature, opportunities, and challenges associated with liquid biopsy and pharmacogenomic (PGx) testing as precision therapy tools in the management of EGFR mutant and resistant lung cancers. Liquid biopsy could play a potential role in selection of precise tyrosine kinase inhibitor (TKI) therapies during different phases of lung cancer treatment. This selection will be based on the driver EGFR mutational status, as well as monitoring the development of potential EGFR mutations arising during or after TKIs treatment, since some of these new mutations may be druggable targets for alternative TKIs. Several studies have identified the utility of liquid biopsy in the identification of EGFR driver and acquired resistance with good sensitivities for various blood-based biomarkers. With a plethora of sequencing technologies and platforms available currently, further evaluations using randomized controlled trials (RCTs) in multicentric, multiethnic and larger patient cohorts could enable optimization of liquid-based assays for the detection of EGFR mutations, and support testing of CYP450 enzymes and drug transporter polymorphisms to guide precise dosing of EGFR TKIs

    GISP increases neurotransmitter receptor stability by down-regulating ESCRT-mediated lysosomal degradation

    No full text
    GPCR interacting scaffold protein (GISP) is a multi-domain brain-specific scaffold protein that can regulate GABA(B) receptor complexes by both enhancing their surface expression and by inhibiting their lysosomal degradation. GISP retards degradation of GABA(B) receptors through its interaction with tumour susceptibility gene 101 (TSG101), a member of the endosomal sorting complex required for transport (ESCRT) lysosomal sorting machinery. We show that in addition to GABA(B), GISP exerts a more general role to increase the steady-state levels of several neurotransmitter receptors. Further, GISP delays TSG101-dependent agonist-induced EGFR down-regulation in human embryonic kidney (HEK) 293 cells whereas a mutant GISP lacking the TSG101 binding domain has no effect. These data suggest that GISP acts as a negative regulator of TSG101-dependent lysosomal degradation and plays an important role in determining the availability of neurotransmitter receptors

    Activity-dependent SUMOylation of the brain-specific scaffolding protein GISP

    No full text
    G-protein coupled receptor interacting scaffold protein (GISP) is a multi-domain, brain-specific protein derived from the A-kinase anchoring protein (AKAP)-9 gene. Using yeast two-hybrid screens to identify GISP interacting proteins we isolated the SUMO conjugating enzyme Ubc9. GISP interacts with Ubc9 in vitro, in heterologous cells and in neurons. SUMOylation is a post-translational modification in which the small protein SUMO is covalently conjugated to target proteins, modulating their function. Consistent with its interaction with Ubc9, we show that GISP is SUMOylated by both SUMO-1 and SUMO-2 in both in vitro SUMOylation assays and in mammalian cells. Intriguingly, SUMOylation of GISP in neurons occurs in an activity-dependent manner in response to chemical LTP. These data suggest that GISP is a novel neuronal SUMO substrate whose SUMOylation status is modulated by neuronal activity
    corecore