33 research outputs found

    Devon: Deformable Volume Network for Learning Optical Flow

    Full text link
    State-of-the-art neural network models estimate large displacement optical flow in multi-resolution and use warping to propagate the estimation between two resolutions. Despite their impressive results, it is known that there are two problems with the approach. First, the multi-resolution estimation of optical flow fails in situations where small objects move fast. Second, warping creates artifacts when occlusion or dis-occlusion happens. In this paper, we propose a new neural network module, Deformable Cost Volume, which alleviates the two problems. Based on this module, we designed the Deformable Volume Network (Devon) which can estimate multi-scale optical flow in a single high resolution. Experiments show Devon is more suitable in handling small objects moving fast and achieves comparable results to the state-of-the-art methods in public benchmarks

    Infrastructure-based Multi-Camera Calibration using Radial Projections

    Full text link
    Multi-camera systems are an important sensor platform for intelligent systems such as self-driving cars. Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually. However, extrinsic calibration of systems with little to no visual overlap between the cameras is a challenge. Given the camera intrinsics, infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion. In this paper, we propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach. Assuming that the distortion is mainly radial, we introduce a two-stage approach. We first estimate the camera-rig extrinsics up to a single unknown translation component per camera. Next, we solve for both the intrinsic parameters and the missing translation components. Extensive experiments on multiple indoor and outdoor scenes with multiple multi-camera systems show that our calibration method achieves high accuracy and robustness. In particular, our approach is more robust than the naive approach of first estimating intrinsic parameters and pose per camera before refining the extrinsic parameters of the system. The implementation is available at https://github.com/youkely/InfrasCal.Comment: ECCV 202

    Measuring the shape of sewer pipes from video

    No full text
    In this paper we address the problem of automatic measurement of the shape of sewer pipes. We describe a method for recovering the interior shape of a sewer pipe from a video sequence that is acquired by a fish-eye lens camera moving inside the pipe. The method is based on solving the general structure-from-motion problem by tracking interest points across successive video frames. Here the interest points are points where the image intensity changes rapidly due to irregularities in the surface texture of the pipe. The experiments with real videos of concrete pipes show that the shape of a sewer pipe can be recovered solely from the video. The proposed method can be additionally used in other applications to recover the scene structure from video sequences taken by a calibrated fish-eye lens camera. 1

    Object localization by subspace clustering of local descriptors

    No full text
    Abstract. This paper presents a probabilistic approach for object localization which combines subspace clustering with the selection of discriminative clusters. Clustering is often a key step in object recognition and is penalized by the high dimensionality of the descriptors. Indeed, local descriptors, such as SIFT, which have shown excellent results in recognition, are high-dimensional and live in different low-dimensional subspaces. We therefore use a subspace clustering method called High-Dimensional Data Clustering (HDDC) which overcomes the curse of dimensionality. Furthermore, in many cases only a few of the clusters are useful to discriminate the object. We, thus, evaluate the discriminative capacity of clusters and use it to compute the probability that a local descriptor belongs to the object. Experimental results demonstrate the effectiveness of our probabilistic approach for object localization and show that subspace clustering gives better results compared to standard clustering methods. Furthermore, our approach outperforms existing results for the Pascal 2005 dataset.
    corecore