14,282 research outputs found

    Generation of GHZ and W states for stationary qubits in spin network via resonance scattering

    Full text link
    We propose a simple scheme to establish entanglement among stationary qubits based on the mechanism of resonance scattering between them and a single-spin-flip wave packet in designed spin network. It is found that through the natural dynamical evolution of an incident single-spin-flip wave packet in a spin network and the subsequent measurement of the output single-spin-flip wave packet,multipartite entangled states among n stationary qubits, Greenberger-Horne-Zeilinger (GHZ) and W states can be generated.Comment: 8 pages, 6 figure

    Partitioning technique for a discrete quantum system

    Full text link
    We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.Comment: 7 pages, 2 figure

    Electron Removal Self Energy and its application to Ca2CuO2Cl2

    Full text link
    We propose using the self energy defined for the electron removal Green's function. Starting from the electron removal Green's function, we obtained expressions for the removal self energy Sigma^ER (k,omega) that are applicable for non-quasiparticle photoemission spectral functions from a single band system. Our method does not assume momentum independence and produces the self energy in the full k-omega space. The method is applied to the angle resolved photoemission from Ca_2CuO_2Cl_2 and the result is found to be compatible with the self energy value from the peak width of sharp features. The self energy is found to be only weakly k-dependent. In addition, the Im Sigma shows a maximum at around 1 eV where the high energy kink is located.Comment: 5 pages, 3 figure

    Hadron Masses in Medium and Neutron Star Properties

    Full text link
    We investigate the properties of the neutron star with relativistic mean field models. We incorporate in the quantum hadrodynamics and in the quark-meson coupling models a possible reduction of meson masses in nuclear matter. The equation of state for neutron star matter is obtained and is employed in Oppenheimer-Volkov equation to extract the maximum mass of the stable neutron star. We find that the equation of state, the composition and the properties of the neutron stars are sensitive to the values of the meson masses in medium.Comment: 18 pages, 5 figures and 2 tables. To be published in EPJ

    Supersymmetric Electroweak Corrections to W±HW^{\pm}H^{\mp} Associated Production at the CERN Large Hadron Collider

    Get PDF
    The O(αewmt(b)2/mW2)O(\alpha_{ew}m_{t(b)}^{2}/m_{W}^{2}) and O(αewmt(b)4/mW4)O(\alpha_{ew} m_{t(b)}^4/m_W^4) supersymmetric electroweak corrections to the cross section for W±HW^{\pm}H^{\mp} associated production at the LHC are calculated in the minimal supersymmetric standard model. Those corrections arise from the quantum effects which are induced by the Yukawa couplings from the Higgs sector and the chargino-top(bottom)-sbottom(stop) couplings, neutralino-top(bottom)-stop(sbottom) couplings and charged Higgs-stop-sbottom couplings. The numerical results show that the Yukawa corrections arising from the Higgs sector can decrease the total cross sections significantly for low tanβ(=1.5\tan\beta(=1.5 and 2)2) when mH+(<300)m_{H^+}(<300)GeV, which exceed -12%. For high tanβ\tan\beta the Yukawa corrections become negligibly small. The genuine supersymmetric electroweak corrections can increase or decrease the total cross sections depending on the supersymmetric parameters, which can exceed -25% for the favorable supersymmetric parameter values. We also show that the genuine supersymmetric electroweak corrections depend strongly on the choice of tanβ\tan\beta, AtA_t, MQ~M_{\tilde Q} and μ\mu. For large values of AtA_t, or large values of μ\mu and tanβ\tan\beta, one can get much larger corrections. The corrections can become very small, in contrast, for larger values of MQ~M_{\tilde Q}

    Application of Edwards' statistical mechanics to high dimensional jammed sphere packings

    Full text link
    The isostatic jamming limit of frictionless spherical particles from Edwards' statistical mechanics [Song \emph{et al.}, Nature (London) {\bf 453}, 629 (2008)] is generalized to arbitrary dimension dd using a liquid-state description. The asymptotic high-dimensional behavior of the self-consistent relation is obtained by saddle-point evaluation and checked numerically. The resulting random close packing density scaling ϕd2d\phi\sim d\,2^{-d} is consistent with that of other approaches, such as replica theory and density functional theory. The validity of various structural approximations is assessed by comparing with three- to six-dimensional isostatic packings obtained from simulations. These numerical results support a growing accuracy of the theoretical approach with dimension. The approach could thus serve as a starting point to obtain a geometrical understanding of the higher-order correlations present in jammed packings.Comment: 13 pages, 7 figure

    Discovery of new quasi-periodic oscillations in the X-ray transient source V~0332+53

    Full text link
    We report the discovery of a new quasi-period oscillation (QPO) at 0.22 Hz, centered on the source spin frequency of the high mass X-ray binary system V~0332+53 when the source was observed during its November 2004/March 2005 outburst by {\em RXTE}. Besides this new QPO, we also detected the known 0.05 Hz QPO. Both the 0.22 and 0.05 Hz QPOs stand out clearly at a mid-flux level of the outburst within January 15--19 2005, and later at an even lower flux level as the width of 0.22 Hz QPO drops. No evolution of the centroid frequency with the flux is seen in either QPO. The rms value below 10 keV is around 4--6% for both QPOs and decreases at higher energies. We discuss our results in the context of current QPO models.Comment: 5 figures, 12 pages. AASTex preprint style. (In 2005, ApJ Let., 629, L33
    corecore