370 research outputs found
An entropy based proof of the Moore bound for irregular graphs
We provide proofs of the following theorems by considering the entropy of
random walks: Theorem 1.(Alon, Hoory and Linial) Let G be an undirected simple
graph with n vertices, girth g, minimum degree at least 2 and average degree d:
Odd girth: If g=2r+1,then n \geq 1 + d*(\Sum_{i=0}^{r-1}(d-1)^i) Even girth: If
g=2r,then n \geq 2*(\Sum_{i=0}^{r-1} (d-1)^i) Theorem 2.(Hoory) Let G =
(V_L,V_R,E) be a bipartite graph of girth g = 2r, with n_L = |V_L| and n_R =
|V_R|, minimum degree at least 2 and the left and right average degrees d_L and
d_R. Then, n_L \geq \Sum_{i=0}^{r-1}(d_R-1)^{i/2}(d_L-1)^{i/2} n_R \geq
\Sum_{i=0}^{r-1}(d_L-1)^{i/2}(d_R-1)^{i/2}Comment: 6 page
The Quantum Complexity of Set Membership
We study the quantum complexity of the static set membership problem: given a
subset S (|S| \leq n) of a universe of size m (m \gg n), store it as a table of
bits so that queries of the form `Is x \in S?' can be answered. The goal is to
use a small table and yet answer queries using few bitprobes. This problem was
considered recently by Buhrman, Miltersen, Radhakrishnan and Venkatesh, where
lower and upper bounds were shown for this problem in the classical
deterministic and randomized models. In this paper, we formulate this problem
in the "quantum bitprobe model" and show tradeoff results between space and
time.In this model, the storage scheme is classical but the query scheme is
quantum.We show, roughly speaking, that similar lower bounds hold in the
quantum model as in the classical model, which imply that the classical upper
bounds are more or less tight even in the quantum case. Our lower bounds are
proved using linear algebraic techniques.Comment: 19 pages, a preliminary version appeared in FOCS 2000. This is the
journal version, which will appear in Algorithmica (Special issue on Quantum
Computation and Quantum Cryptography). This version corrects some bugs in the
parameters of some theorem
Surface structure of Quark stars with magnetic fields
We investigate the impact of magnetic fields on the electron distribution in
the electrosphere of quark stars. For moderately strong magnetic fields G, quantization effects are generally weak due to the large number
density of electrons at surface, but can nevertheless affect the spectral
features of quark stars. We outline the main observational characteristics of
quark stars as determined by their surface emission, and briefly discuss their
formation in explosive events termed Quark-Novae, which may be connected to the
-process.Comment: 9 pages, 3 figures. Contribution to the proceedings of the IXth
Workshop on High Energy Physics Phenomenology (WHEPP-9), Bhubaneswar, India,
3-14 Jan. 200
Quark Matter in Neutron Stars: An apercu
The existence of deconfined quark matter in the superdense interior of
neutron stars is a key question that has drawn considerable attention over the
past few decades. Quark matter can comprise an arbitrary fraction of the star,
from 0 for a pure neutron star to 1 for a pure quark star, depending on the
equation of state of matter at high density. From an astrophysical viewpoint,
these two extreme cases are generally expected to manifest different
observational signatures. An intermediate fraction implies a hybrid star, where
the interior consists of mixed or homogeneous phases of quark and nuclear
matter, depending on surface and Coulomb energy costs, as well as other finite
size and screening effects. In this brief review article, we discuss what we
can deduce about quark matter in neutron stars in light of recent exciting
developments in neutron star observations. We state the theoretical ideas
underlying the equation of state of dense quark matter, including color
superconducting quark matter. We also highlight recent advances stemming from
re-examination of an old paradigm for the surface structure of quark stars and
discuss possible evolutionary scenarios from neutron stars to quark stars, with
emphasis on astrophysical observations.Comment: 15 pages, 1 figure. Invited review for Modern Physics Letters
Constraining phases of quark matter with studies of r-mode damping in neutron stars
The r-mode instability in rotating compact stars is used to constrain the
phase of matter at high density. The color-flavor-locked phase with kaon
condensation (CFL-K0) and without (CFL) is considered in the temperature range
10^8K < T <10^{11} K. While the bulk viscosity in either phase is only
effective at damping the r-mode at temperatures T > 10^{11} K, the shear
viscosity in the CFL-K0 phase is the only effective damping agent all the way
down to temperatures T > 10^8 K characteristic of cooling neutron stars.
However, it cannot keep the star from becoming unstable to gravitational wave
emission for rotation frequencies f ~ 56-11 Hz at T ~ 10^8-10^9 K. Stars
composed almost entirely of CFL or CFL-K0 matter are ruled out by observation
of rapidly rotating neutron stars, indicating that dissipation at the
quark-hadron interface or nuclear crust interface must play a key role in
damping the instability.Comment: 8 pages, 2 figure
Scalar-isoscalar excitation in dense quark matter
We study the spectrum of scalar-isoscalar excitations in the color-flavor
locked phase of dense quark matter. The sigma meson in this phase appears as a
four-quark state (of diquark and anti-diquark) with a well-defined mass and
extremely small width, as a consequence of it's small coupling to two pions.
The quark particle/hole degrees of freedom also contribute significantly to the
correlator just above the threshold 2\Delta where \Delta is the superconducting
gap.Comment: RevTeX, 11 pages, 4 fig
Neutrino emission in neutron matter from magnetic moment interactions
Neutrino emission drives neutron star cooling for the first several hundreds
of years after its birth. Given the low energy ( keV) nature of this
process, one expects very few nonstandard particle physics contributions which
could affect this rate. Requiring that any new physics contributions involve
light degrees of freedom, one of the likely candidates which can affect the
cooling process would be a nonzero magnetic moment for the neutrino. To
illustrate, we compute the emission rate for neutrino pair bremsstrahlung in
neutron-neutron scattering through photon-neutrino magnetic moment coupling. We
also present analogous differential rates for neutrino scattering off nucleons
and electrons that determine neutrino opacities in supernovae. Employing
current upper bounds from collider experiments on the tau magnetic moment, we
find that the neutrino emission rate can exceed the rate through neutral
current electroweak interaction by a factor two, signalling the importance of
new particle physics input to a standard calculation of relevance to neutron
star cooling. However, astrophysical bounds on the neutrino magnetic moment
imply smaller effects.Comment: 9 pages, 1 figur
Angiotensin-Converting Enzyme Gene Polymorphism in Patients with Coronary Artery Disease
Several genetic investigations have been attempted to elucidate the association of gene polymorphism of angiotensin-converting enzyme (ACE) in coronary artery disease. This study was conducted to investigate the role of gene polymorphism of ACE in patients with coronary artery disease. The study included fifty-six numbers of patients with atherosclerotic coronary artery disease where proven angiographically and fifty-six numbers of healthy individuals of sex matched as a control group. The patients and control group were subjected to routine investigations, assays like, serum cholesterol, triglycerides, high-density Lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C). Genomic DNA was extracted and analyzed for angiotensin-converting enzyme insertion/deletion polymorphism using polymerase chain reaction (PCR). When we compared the genotypes of patients with coronary artery disease and controls, it was observed that all three genotypes were not statistically different also no significant difference of alleles in ACE gene genotypes was found. Inpatient serum cholesterol, triglyceride and HDL-C (P <0.001, P <0.001 and P <0.001: respectively) showed a significant increase than the control group. In patients, LDL-C level was not more significant than controls. In the evaluated population, we conclude that the gene I/D polymorphism for ACE are not risk associated and may not be a useful marker for coronary artery disease
Thermal Photons in Strong Interactions
A brief survey is given on the current status of evaluating thermal
production of photons from a strongly interacting medium. Emphasis is put on
recent progress in assessing equilibrium emission rates in both hadronic and
quark-gluon matter. We also give an update on the status of comparing
theoretical calculations with experimental data from heavy-ion collisions at
the SPS, as well as prospects for RHIC. Finally, applications of photon rate
calculations to colorsuperconducting quark matter are discussed.Comment: Brief Review for Mod. Phys. Lett A, 15 pages latex incl. 12 ps/eps
figs and style file ws-mpla.cl
- …
