579 research outputs found

    The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer

    Get PDF
    Vascular endothelial growth factor (VEGF)-A inhibitors exhibit unseen high responses and toxicity in recurrent epithelial ovarian cancer suggesting an important role for the VEGF/VEGFR pathway. We studied the correlation of VEGF signalling and AKT/mTOR signalling. Using a tissue microarray of clinical samples (N=86), tumour cell immunohistochemical staining of AKT/mTOR downstream targets, pS6 and p4E-BP1, together with tumour cell staining of VEGF-A and pVEGFR2 were semi-quantified. A correlation was found between the marker for VEGFR2 activation (pVEGFR2) and a downstream target of AKT/mTOR signalling (pS6) (R=0.29; P=0.002). Additional gene expression analysis in an independent cDNA microarray dataset (N=24) showed a negative correlation (R=−0.73, P<0.0001) between the RPS6 and the VEGFR2 gene, which is consistent as the gene expression and phosphorylation of S6 is inversely regulated. An activated tumour cell VEGFR2/AKT/mTOR pathway was associated with increased incidence of ascites (χ2, P=0.002) and reduced overall survival of cisplatin–taxane-based patients with serous histology (N=32, log-rank test, P=0.04). These data propose that VEGF-A signalling acts on tumour cells as a stimulator of the AKT/mTOR pathway. Although VEGF-A inhibitors are classified as anti-angiogenic drugs, these data suggest that the working mechanism has an important additional modality of targeting the tumour cells directly

    NF-κB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation

    Get PDF
    Activation of NF-κB in inflammatory breast cancer (IBC) is associated with loss of estrogen receptor (ER) expression, indicating a potential crosstalk between NF-κB and ER. In this study, we examined the activation of NF-κB in IBC and non-IBC with respect to ER and EGFR and/or ErbB2 expression and MAPK hyperactivation. A qRT–PCR based ER signature was evaluated in tumours with and without transcriptionally active NF-κB, as well as correlated with the expression of eight NF-κB target genes. Using a combined ER/NF-κB signature, hierarchical clustering was executed. Hyperactivation of MAPK was investigated using a recently described MAPK signature (Creighton et al, 2006), and was linked to tumour phenotype, ER and EGFR and/or ErbB2 overexpression. The expression of most ER-modulated genes was significantly elevated in breast tumours without transcriptionally active NF-κB. In addition, the expression of most ER-modulated genes was significantly anticorrelated with the expression of most NF-κB target genes, indicating an inverse correlation between ER and NF-κB activation. Clustering using the combined ER and NF-κB signature revealed one cluster mainly characterised by low NF-κB target gene expression and a second one with elevated NF-κB target gene expression. The first cluster was mainly characterised by non-IBC specimens and IHC ER+ breast tumours (13 out of 18 and 15 out of 18 respectively), whereas the second cluster was mainly characterised by IBC specimens and IHC ER− breast tumours (12 out of 19 and 15 out of 19 respectively) (Pearson χ2, P<0.0001 and P<0.0001 respectively). Hyperactivation of MAPK was associated with both ER status and tumour phenotype by unsupervised hierarchical clustering using the MAPK signature and was significantly reflected by overexpression of EGFR and/or ErbB2. NF-κB activation is linked to loss of ER expression and activation in IBC and in breast cancer in general. The inverse correlation between NF-κB activation and ER activation is due to EGFR and/or ErbB2 overexpression, resulting in NF-κB activation and ER downregulation

    HER-2 status of circulating tumor cells in a metastatic breast cancer cohort: A comparative study on characterization techniques

    Get PDF
    Background Personalized targeted treatment in metastatic breast cancer relies on accurate assessment of molecular aberrations, e.g. overexpression of Human Epidermal growth factor Receptor 2 (HER-2). Molecular interrogation of circulating tumor cells (CTCs) can provide an attractive alternative for real-time biomarker assessment. However, implementation of CellSearch-based HER-2 analysis has been limited. Immunofluorescent (IF) image interpretation is crucial, as different HER-2 categories have been described. Major questions in CTC research are how these IF categories reflect gene expression and amplification, and if we should consider ‘medium’ HER-2 expressing CTCs for patient selection. Methods Tumor cells from spiked cell lines (n = 8) and CTCs (n = 116 samples) of 85 metastatic breast cancer patients were enriched using CellSearch. Comparative analysis of HER-2 expression by IF imaging (ACCEPT, DEPArray, and visual scoring) with qRT-PCR and HER-2/neu FISH was performed. Results Automated IF HER-2-profiling by DEPArray and ACCEPT delivered comparable results. There was a 98% agreement between 17 trained observers (visual scoring) and ACCEPT considering HER-2neg and HER-2high expressing CTCs. However, 89% of HER-2med expressing CTCs by ACCEPT were scored negative by observers. HER-2high expressing tumor cells demonstrated HER-2/neu gene amplification, whereas HER-2neg and HER-2med expressing tumor cells and CTCs by ACCEPT were copy-number neutral. All patients with HER-2-positive archival tumors had �1 HER-2high expressing CTCs, while 80% of HER-2- negative patients did not. High relative gene expression of HER-2 measured on enriched CTC lysates correlated with having �1 HER-2high expressing CTCs. Conclusion Automated images analysis has enormous potential for clinical implementation. HER-2 characterization and clinical trial design should be focused on HER-2high expressing CTCs

    Aberrant methylation of the Adenomatous Polyposis Coli (APC) gene promoter is associated with the inflammatory breast cancer phenotype

    Get PDF
    Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter occurs in about 40% of breast tumours and has been correlated with reduced APC protein levels. To what extent epigenetic alterations of the APC gene may differ according to specific breast cancer phenotypes, remains to be elucidated. Our aim was to explore the role of APC methylation in the inflammatory breast cancer (IBC) phenotype. The status of APC gene promoter hypermethylation was investigated in DNA from normal breast tissues, IBC and non-IBC by both conventional and real-time quantitative methylation-specific PCR (MSP). APC methylation levels were compared with APC mRNA and protein levels. Hypermethylation of the APC gene promoter was present in 71% of IBC samples (n=21) and 43% of non-IBC samples (n=30) by conventional MSP (P=0.047). The APC gene also showed an increased frequency of high methylation levels in IBC (in 74% of cases, n=19) vs non-IBC (in 46% of cases, n=35) using a qMSP assay (P=0.048). We observed no significant association between APC methylation levels by qMSP and APC mRNA or protein expression levels. In conclusion, for the first time, we report the association of aberrant methylation of the APC gene promoter with the IBC phenotype, which might be of biological and clinical importance

    No difference in striatal dopamine transporter availability between active smokers, ex-smokers and non-smokers using [123I]FP-CIT (DaTSCAN) and SPECT

    Get PDF
    Background: Mesolimbic and nigrostriatal dopaminergic pathways play important roles in both the rewarding and conditioning effects of drugs. The dopamine transporter (DAT) is of central importance in regulating dopaminergic neurotransmission and in particular in activating the striatal D2-like receptors. Molecular imaging studies of the relationship between DAT availability/dopamine synthesis capacity and active cigarette smoking have shown conflicting results. Through the collaboration between 13 SPECT centres located in 10 different European countries, a database of FP-CIT-binding in healthy controls was established. We used the database to test the hypothesis that striatal DAT availability is changed in active smokers compared to non-smokers and ex-smokers. Methods: A total of 129 healthy volunteers were included. Subjects were divided into three categories according to past and present tobacco smoking: (1) non-smokers (n = 64), (2) ex-smokers (n = 39) and (3) active smokers (n = 26). For imaging of the DAT availability, we used [123I]FP-CIT (DaTSCAN) and single photon emission computed tomography (SPECT). Data were collected in collaboration between 13 SPECT centres located in 10 different European countries. The striatal measure of DAT availability was analyzed in a multiple regression model with age, SPECT centre and smoking as predictor. Results: There was no statistically significant difference in DAT availability between the groups of active smokers, ex-smokers and non-smokers (p = 0.34). Further, we could not demonstrate a significant association between striatal DAT and the number of cigarettes per day or total lifetime cigarette packages in smokers and ex-smokers. Conclusion: Our results do not support the hypothesis that large differences in striatal DAT availability are present in smokers compared to ex-smokers and healthy volunteers with no history of smoking

    Reduction in camera-specific variability in [123I]FP-CIT SPECT outcome measures by image reconstruction optimized for multisite settings: impact on age-dependence of the specific binding ratio in the ENC-DAT database of healthy controls

    Get PDF
    Purpose Quantitative estimates of dopamine transporter availability, determined with [123I]FP-CIT SPECT, depend on the SPECT equipment, including both hardware and (reconstruction) software, which limits their use in multicentre research and clinical routine. This study tested a dedicated reconstruction algorithm for its ability to reduce camera-specific intersubject variability in [123I]FP-CIT SPECT. The secondary aim was to evaluate binding in whole brain (excluding striatum) as a reference for quantitative analysis. Methods Of 73 healthy subjects from the European Normal Control Database of [123I]FP-CIT recruited at six centres, 70 aged between 20 and 82 years were included. SPECT images were reconstructed using the QSPECT software package which provides fully automated detection of the outer contour of the head, camera-specific correction for scatter and septal penetration by transmission-dependent convolution subtraction, iterative OSEMreconstruction including attenuation correction, and camera-specific Bto kBq/ml^ calibration. LINK and HERMES reconstruction were used for head-to-head comparison. The specific striatal [123I]FP-CIT binding ratio (SBR) was computed using the Southampton method with binding in the whole brain, occipital cortex or cerebellum as the reference. The correlation between SBR and age was used as the primary quality measure. Results The fraction of SBR variability explained by age was highest (1) with QSPECT, independently of the reference region, and (2) with whole brain as the reference, independently of the reconstruction algorithm. Conclusion QSPECT reconstruction appears to be useful for reduction of camera-specific intersubject variability of [123I]FP-CIT SPECT in multisite and single-site multicamera settings. Whole brain excluding striatal binding as the reference provides more stable quantitative estimates than occipital or cerebellar binding
    • …
    corecore