14,582 research outputs found

    Convection in the Earth's core driven by lateral variations in the core-mantle boundary heat flux

    Get PDF
    Moving core fluid maintains an isothermal core-mantle boundary (CMB), so lateral variations in the CMB heat flow result from mantle convection. Such variations will drive thermal winds, even if the top of the core is stably stratified. These flows may contribute to the magnetic secular variation and are investigated here using a simple, non-magnetic numerical model of the core. The results depend on the equatorial symmetry of the boundary heat flux variation. Large-scale equatorially symmetric (ES) heat flux variations at the outer surface of a rapidly rotating spherical shell drive deeply penetrating flows that are strongly suppressed in stratified fluid. Smaller-scale ES heat flux variations drive flows less dominated by rotation and so less inhibited by stratification. Equatorially anti-symmetric flux variations drive flows an order of magnitude less energetic than those driven by ES patterns but, due to the nature of the Coriolis force, are less suppressed by stratification. The response of the rotating core fluid to a general CMB heat flow pattern will then depend strongly on the subadiabatic temperature profile. Imposing a lateral heat flux variation linearly related to a model of seismic tomography in the lowermost mantle drives flow in a density stratified fluid that reproduces some features found in flows inverted from geomagnetic data

    The Action of Instantons with Nut Charge

    Full text link
    We examine the effect of a non-trivial nut charge on the action of non-compact four-dimensional instantons with a U(1) isometry. If the instanton action is calculated by dimensionally reducing along the isometry, then the nut charge is found to make an explicit non-zero contribution. For metrics satisfying AF, ALF or ALE boundary conditions, the action can be expressed entirely in terms of quantities (including the nut charge) defined on the fixed point set of the isometry. A source (or sink) of nut charge also implies the presence of a Misner string coordinate singularity, which will have an important effect on the Hamiltonian of the instanton.Comment: 25 page

    Branes as BIons

    Full text link
    A BIon may be defined as a finite energy solution of a non-linear field theory with distributional sources. By contrast a soliton is usually defined to have no sources. I show how harmonic coordinates map the exteriors of the topologically and causally non-trivial spacetimes of extreme p-branes to BIonic solutions of the Einstein equations in a topologically trivial spacetime in which the combined gravitational and matter energy momentum is located on distributional sources. As a consequence the tension of BPS p-branes is classically unrenormalized. The result holds equally for spacetimes with singularities and for those, like the M-5-brane, which are everywhere singularity free.Comment: Latex, 9 pages, no figure

    Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    Get PDF
    We show that under variation of moduli fields ϕ\phi the first law of black hole thermodynamics becomes dM=κdA8π+ΩdJ+ψdq+χdpΣdϕdM = {\kappa dA\over 8\pi} + \Omega dJ + \psi dq + \chi dp - \Sigma d\phi, where Σ\Sigma are the scalar charges. We also show that the ADM mass is extremized at fixed AA, JJ, (p,q)(p,q) when the moduli fields take the fixed value ϕfix(p,q)\phi_{\rm fix}(p,q) which depend only on electric and magnetic charges. It follows that the least mass of any black hole with fixed conserved electric and magnetic charges is given by the mass of the double-extreme black hole with these charges. Our work allows us to interpret the previously established result that for all extreme black holes the moduli fields at the horizon take a value ϕ=ϕfix(p,q)\phi= \phi_{\rm fix}(p,q) depending only on the electric and magnetic conserved charges: ϕfix(p,q) \phi_{\rm fix}(p,q) is such that the scalar charges Σ(ϕfix,(p,q))=0\Sigma ( \phi_{\rm fix}, (p,q))=0.Comment: 3 pages, no figures, more detailed versio

    Gravitational Instantons, Confocal Quadrics and Separability of the Schr\"odinger and Hamilton-Jacobi equations

    Full text link
    A hyperk\"ahler 4-metric with a triholomorphic SU(2) action gives rise to a family of confocal quadrics in Euclidean 3-space when cast in the canonical form of a hyperk\"ahler 4-metric metric with a triholomorphic circle action. Moreover, at least in the case of geodesics orthogonal to the U(1) fibres, both the covariant Schr\"odinger and the Hamilton-Jacobi equation is separable and the system integrable.Comment: 10 pages Late

    Bohm and Einstein-Sasaki Metrics, Black Holes and Cosmological Event Horizons

    Get PDF
    We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Einstein metrics on spheres and products of spheres of dimension 5 <= d <= 9. We prove that all the Bohm metrics on S^3 x S^2 and S^3 x S^3 have negative eigenvalue modes of the Lichnerowicz operator and by numerical methods we establish that Bohm metrics on S^5 have negative eigenvalues too. We argue that all the Bohm metrics will have negative modes. These results imply that higher-dimensional black-hole spacetimes where the Bohm metric replaces the usual round sphere metric are classically unstable. We also show that the stability criterion for Freund-Rubin solutions is the same as for black-hole stability, and hence such solutions using Bohm metrics will also be unstable. We consider possible endpoints of the instabilities, and show that all Einstein-Sasaki manifolds give stable solutions. We show how Wick rotation of Bohm metrics gives spacetimes that provide counterexamples to a strict form of the Cosmic Baldness conjecture, but they are still consistent with the intuition behind the cosmic No-Hair conjectures. We show how the Lorentzian metrics may be created ``from nothing'' in a no-boundary setting. We argue that Lorentzian Bohm metrics are unstable to decay to de Sitter spacetime. We also argue that noncompact versions of the Bohm metrics have infinitely many negative Lichernowicz modes, and we conjecture a general relation between Lichnerowicz eigenvalues and non-uniqueness of the Dirichlet problem for Einstein's equations.Comment: 53 pages, 11 figure

    AdS3 Gravitational Instantons from Conformal Field Theory

    Full text link
    A conformal field theory on the boundary of three-dimensional asymptotic anti-de Sitter spaces which appear as near horizon geometry of D-brane bound states is discussed. It is shown that partition functions of gravitational instantons appear as high and low temperature limits of the partition function of the conformal field theory. The result reproduces phase transition between the anti-de Sitter space and the BTZ black hole in the bulk gravity.Comment: 22 pages, minor correction
    corecore