14,582 research outputs found
Convection in the Earth's core driven by lateral variations in the core-mantle boundary heat flux
Moving core fluid maintains an isothermal core-mantle boundary (CMB), so lateral variations in the CMB heat flow result from mantle convection. Such variations will
drive thermal winds, even if the top of the core is stably stratified. These flows may contribute to the magnetic secular variation and are investigated here using a simple,
non-magnetic numerical model of the core. The results depend on the equatorial symmetry of the boundary heat flux variation. Large-scale equatorially symmetric
(ES) heat flux variations at the outer surface of a rapidly rotating spherical shell drive
deeply penetrating flows that are strongly suppressed in stratified fluid. Smaller-scale
ES heat flux variations drive flows less dominated by rotation and so less inhibited
by stratification. Equatorially anti-symmetric flux variations drive flows an order of
magnitude less energetic than those driven by ES patterns but, due to the nature of the Coriolis force, are less suppressed by stratification. The response of the rotating core fluid to a general CMB heat flow pattern will then depend strongly on the subadiabatic temperature profile. Imposing a lateral heat flux variation linearly related to a model of seismic tomography in the lowermost mantle drives flow in a density stratified fluid that
reproduces some features found in flows inverted from geomagnetic data
The Action of Instantons with Nut Charge
We examine the effect of a non-trivial nut charge on the action of
non-compact four-dimensional instantons with a U(1) isometry. If the instanton
action is calculated by dimensionally reducing along the isometry, then the nut
charge is found to make an explicit non-zero contribution. For metrics
satisfying AF, ALF or ALE boundary conditions, the action can be expressed
entirely in terms of quantities (including the nut charge) defined on the fixed
point set of the isometry. A source (or sink) of nut charge also implies the
presence of a Misner string coordinate singularity, which will have an
important effect on the Hamiltonian of the instanton.Comment: 25 page
Branes as BIons
A BIon may be defined as a finite energy solution of a non-linear field
theory with distributional sources. By contrast a soliton is usually defined to
have no sources. I show how harmonic coordinates map the exteriors of the
topologically and causally non-trivial spacetimes of extreme p-branes to BIonic
solutions of the Einstein equations in a topologically trivial spacetime in
which the combined gravitational and matter energy momentum is located on
distributional sources. As a consequence the tension of BPS p-branes is
classically unrenormalized. The result holds equally for spacetimes with
singularities and for those, like the M-5-brane, which are everywhere
singularity free.Comment: Latex, 9 pages, no figure
Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics
We show that under variation of moduli fields the first law of black
hole thermodynamics becomes , where are the scalar charges. We also show
that the ADM mass is extremized at fixed , , when the moduli
fields take the fixed value which depend only on electric
and magnetic charges. It follows that the least mass of any black hole with
fixed conserved electric and magnetic charges is given by the mass of the
double-extreme black hole with these charges. Our work allows us to interpret
the previously established result that for all extreme black holes the moduli
fields at the horizon take a value depending only
on the electric and magnetic conserved charges: is such
that the scalar charges .Comment: 3 pages, no figures, more detailed versio
Gravitational Instantons, Confocal Quadrics and Separability of the Schr\"odinger and Hamilton-Jacobi equations
A hyperk\"ahler 4-metric with a triholomorphic SU(2) action gives rise to a
family of confocal quadrics in Euclidean 3-space when cast in the canonical
form of a hyperk\"ahler 4-metric metric with a triholomorphic circle action.
Moreover, at least in the case of geodesics orthogonal to the U(1) fibres, both
the covariant Schr\"odinger and the Hamilton-Jacobi equation is separable and
the system integrable.Comment: 10 pages Late
Bohm and Einstein-Sasaki Metrics, Black Holes and Cosmological Event Horizons
We study physical applications of the Bohm metrics, which are infinite
sequences of inhomogeneous Einstein metrics on spheres and products of spheres
of dimension 5 <= d <= 9. We prove that all the Bohm metrics on S^3 x S^2 and
S^3 x S^3 have negative eigenvalue modes of the Lichnerowicz operator and by
numerical methods we establish that Bohm metrics on S^5 have negative
eigenvalues too. We argue that all the Bohm metrics will have negative modes.
These results imply that higher-dimensional black-hole spacetimes where the
Bohm metric replaces the usual round sphere metric are classically unstable. We
also show that the stability criterion for Freund-Rubin solutions is the same
as for black-hole stability, and hence such solutions using Bohm metrics will
also be unstable. We consider possible endpoints of the instabilities, and show
that all Einstein-Sasaki manifolds give stable solutions. We show how Wick
rotation of Bohm metrics gives spacetimes that provide counterexamples to a
strict form of the Cosmic Baldness conjecture, but they are still consistent
with the intuition behind the cosmic No-Hair conjectures. We show how the
Lorentzian metrics may be created ``from nothing'' in a no-boundary setting. We
argue that Lorentzian Bohm metrics are unstable to decay to de Sitter
spacetime. We also argue that noncompact versions of the Bohm metrics have
infinitely many negative Lichernowicz modes, and we conjecture a general
relation between Lichnerowicz eigenvalues and non-uniqueness of the Dirichlet
problem for Einstein's equations.Comment: 53 pages, 11 figure
Recommended from our members
Chelydra serpentina
Number of Pages: 4Integrative BiologyGeological Science
AdS3 Gravitational Instantons from Conformal Field Theory
A conformal field theory on the boundary of three-dimensional asymptotic
anti-de Sitter spaces which appear as near horizon geometry of D-brane bound
states is discussed. It is shown that partition functions of gravitational
instantons appear as high and low temperature limits of the partition function
of the conformal field theory. The result reproduces phase transition between
the anti-de Sitter space and the BTZ black hole in the bulk gravity.Comment: 22 pages, minor correction
- …