943 research outputs found

    Influence of vegetation to boundary shear stress in open channel for overbank flow

    Get PDF
    River hydrodynamicsBed roughness and flow resistanc

    Descendants of the first stars: the distinct chemical signature of second generation stars

    Full text link
    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only 1%\sim 1\% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.Comment: 18 pages, 20 figures, published in MNRA

    Ferromagnetic Quantum Critical Fluctuations and Anomalous Coexistence of Ferromagnetism and Superconductivity in UCoGe Revealed by Co-NMR and NQR Studies

    Full text link
    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were performed in the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions were reported to occur at TCurie3T_{\rm Curie} \sim 3 K and TS0.8T_S \sim 0.8 K (N. T. Huy {\it et al.}, Phys. Rev. Lett. {\bf 99} (2007) 067006), in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T11/T_1 and Knight-shift measurements, we confirmed that ferromagnetic fluctuations which possess a quantum critical character are present above TCurieT_{\rm Curie} and the occurrence of ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn2_2 and YCo2_2. The onset SC transition was identified at TS0.7T_S \sim 0.7 K, below which 1/T11/T_1 of 30 % of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T11/T_1, which follows a T3T^3 dependence in the temperature range of 0.30.10.3 - 0.1 K, coexists with the magnetic components of 1/T11/T_1 showing a T\sqrt{T} dependence below TST_S. From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe.Comment: 5 pages, 7 figures. submitted to J. Phys. Soc. Jpn. To appear in J. Phys. Soc. Jp

    Environmental dependence of 8 μm luminosity functions of galaxies at z ~ 0.8: Comparison between RXJ1716.4+6708 and the AKARI NEP-deep field

    Get PDF
    Aims. We aim to reveal environmental dependence of infrared luminosity functions (IR LFs) of galaxies at z ~ 0.8 using the AKARI satellite. AKARI’s wide field of view and unique mid-IR filters help us to construct restframe 8 μm LFs directly without relying on SED models. Methods. We construct restframe 8 μm IR LFs in the cluster region RXJ1716.4+6708 at z = 0.81, and compare them with a blank field using the AKARI north ecliptic pole deep field data at the same redshift. AKARI’s wide field of view (10' × 10') is suitable to investigate wide range of galaxy environments. AKARI’s 15 μm filter is advantageous here since it directly probes restframe 8 μm at z ~ 0.8, without relying on a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. Results. We have found that cluster IR LFs at restframe 8 μm have a factor of 2.4 smaller L^∗ and a steeper faint-end slope than that of the field. Confirming this trend, we also found that faint-end slopes of the cluster LFs becomes flatter and flatter with decreasing local galaxy density. These changes in LFs cannot be explained by a simple infall of field galaxy population into a cluster. Physics that can preferentially suppress IR luminous galaxies in high density regions is required to explain the observed results

    Pressure-induced anomalous magnetism and unconventional superconductivity in CeRhIn5 : 115In-NQR Study under Pressure

    Full text link
    We report 115^{115}In nuclear-quadrupole-resonance (NQR) measurements of the pressure(PP)-induced superconductor CeRhIn5_5 in the antiferromagnetic (AF) and superconducting (SC) states. In the AF region, the internal field HintH_{int} at the In site is substantially reduced from Hint=1.75H_{int}=1.75 kOe at P=0 to 0.39 kOe at P=1.23P=1.23 GPa, while the N\'eel temperature slightly changes with increasing PP. This suggests that either the size in the ordered moment MQ(P)M_{Q}(P) or the angle θ(P)\theta (P) between the direction of MQ(P)M_{Q}(P) and the tetragonal cc axis is extrapolated to zero at P=1.6±0.1P^*=1.6 \pm 0.1 GPa at which a bulk SC transition is no longer emergent. In the SC state at P=2.1P=2.1 GPa, the nuclear spin-lattice relaxation rate 115(1/T1)^{115}(1/T_1) has revealed a T3T^3 dependence without the coherence peak just below TcT_c, giving evidence for the unconventional superconductivity. The dimensionality of the magnetic flutuations in the normal state are also discussed.Comment: 8pages,4figures,submitted to Phys. Rev. B. Rapid
    corecore