4,041 research outputs found

    Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies

    Full text link
    Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe Ωb\Omega_b with a precision of about 4%. With Ωb\Omega_b tightly constrained, comparisons of Big Bang Nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the d(d,p)t and d(d,n)^3He total cross sections at lab energies from 110 keV to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2% +/- 1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used Nuclear Astrophysics Compilation of Reaction Rates (NACRE). These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.Comment: 15 pages, 11 figures, minor editorial change

    Coupling of Josephson flux-flow oscillators to an external RC load

    Full text link
    We investigate by numerical simulations the behavior of the power dissipated in a resistive load capacitively coupled to a Josephson flux flow oscillator and compare the results to those obtained for a d.c. coupled purely resistive load. Assuming realistic values for the parameters R and C, both in the high- and in the low-Tc case the power is large enough to allow the operation of such a device in applications.Comment: uuencoded, gzipped tar archive containing 11 pages of REVTeX text + 4 PostScript figures. To appear in Supercond. Sci. Techno

    Analytic Study for the String Theory Landscapes via Matrix Models

    Full text link
    We demonstrate a first-principle analysis of the string theory landscapes in the framework of non-critical string/matrix models. In particular, we discuss non-perturbative instability, decay rate and the true vacuum of perturbative string theories. As a simple example, we argue that the perturbative string vacuum of pure gravity is stable; but that of Yang-Lee edge singularity is inescapably a false vacuum. Surprisingly, most of perturbative minimal string vacua are unstable, and their true vacuum mostly does not suffer from non-perturbative ambiguity. Importantly, we observe that the instability of these tachyon-less closed string theories is caused by ghost D-instantons (or ghost ZZ-branes), the existence of which is determined only by non-perturbative completion of string theory.Comment: v1: 5 pages, 2 figures; v2: references and footnote added; v3: 7 pages, 4 figures, organization changed, explanations expanded, references added, reconstruction program from arbitrary spectral curves shown explicitl

    Transverse effects in multifrequency Raman generation

    Get PDF
    The theory of ultrabroadband multifrequency Raman generation is extended, for the first time, to allow for beam-propagation effects in one and two transverse dimensions. We show that a complex transverse structure develops even when diffraction is neglected. In the general case, we examine how the ultrabroadband multifrequency Raman generation process is affected by the intensity, phase quality, and width of the input beams, and by the length of the Raman medium. The evolution of power spectra, intensity profiles, and global characteristics of the multifrequency beams are investigated and explained. In the two-dimensional transverse case, bandwidths comparable to the optical carrier frequency, spanning the whole visible spectrum and beyond, are still achievable

    Theory of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} Cross-Whisker Josephson Junctions

    Full text link
    Takano {\it et al.} [Phys. Rev. B {\bf 65}, 140513 (2002) and unpublished] made Josephson junctions from single crystal whiskers of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} crossed an angle ϕ0\phi_0 about the cc axis. From the mesa structures that formed at the cross-whisker interface, they inferred a critical current density Jc(ϕ0)J_c(\phi_0). Like the single crystal results of Li {\it et al.} [Phys. Rev. Lett. {\bf 83}, 4160 (1999)], we show that the whisker data are unlikely to result from a predominantly d-wave order parameter. However, unlike the single crystals, these results, if correct, require the whisker c-axis transport to be coherent.Comment: 5 pages, 4 figures, accepted for publication in Physical Review

    Collective responses of Bi-2212 stacked junction to 100 GHz microwave radiation under magnetic field oriented along the c-axis

    Full text link
    We studied a response of Bi-2212 mesa type structures to 100 GHz microwave radiation. We found that applying magnetic field of about 0.1 T across the layers enables to observe collective Shapiro step response corresponding to a synchronization of all 50 intrinsic Josephson junctions (IJJ) of the mesa. At high microwave power we observed up to 10th harmonics of the fundamental Shapiro step. Besides, we found microwave induced flux-flow step position of which is proportional to the square root of microwave power and that can exceed at high enough powers 1 THz operating frequency of IJJ oscillations.Comment: 11 pages including 5 figures, accepted for publication in JETP Letter

    Resonances, instabilities, and structure selection of driven Josephson lattice in layered superconductors

    Full text link
    We investigate dynamics of Josephson vortex lattice in layered high Tc_{c} superconductors at high magnetic fields. It is shown that the average electric current depends on the lattice structure and is resonantly enhanced when the Josephson frequency matches the frequency of the plasma mode. We find the stability regions of moving lattice. It is shown that a specific lattice structure at given velocity is uniquely selected by the boundary conditions: at small velocities periodic triangular lattice is stable and looses its stability at some critical velocity. At even higher velocities a structure close to a rectangular lattice is restored.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
    corecore