241 research outputs found

    Development of dual X-mode Doppler reflectometry system in Heliotron J

    Get PDF
    A dual X-mode Doppler reflectometry system is developed to measure the radial electric field in a stellarator/heliotron device, Heliotron J. The system is designed to have dual channels where the observation points are placed symmetrically to the equatorial plane, enabling the poloidal flow velocity measurement at two different positions in the same toroidal section, which is useful for the search for a zonal flow. In the system, an RF source generates the microwave frequency of 8.25–12.5 GHz, upconverted by an intermediate frequency of 27.5 MHz and transmitted with a coaxial cable to a transmitter located near the Heliotoron J vacuum vessel. After quadrupling the RF waves at the transmitter, the microwaves of 33–50 GHz are injected in X-mode into a plasma using a spherical focusing mirror installed inside the vacuum vessel. The local wavenumber of the probing microwaves, k⊥, is 1.56–1.66 cm⁻¹. The Doppler-shifted reflected wave is downconverted to a 110 MHz signal by mixing with the LO at the receiver, amplified, and then detected by an I/Q detector. In a tabletop test, we have confirmed that the phase estimated by the I/Q detector is proportionally changed as a function of the horn antenna distance. We have successfully measured the Doppler-shifted spectra of the I/Q signals and estimated the radial electric field in an electron cyclotron heated (ECH) plasma

    Singlet-triplet transition in a single-electron transistor at zero magnetic field

    Full text link
    We report sharp peaks in the differential conductance of a single-electron transistor (SET) at low temperature, for gate voltages at which charge fluctuations are suppressed. For odd numbers of electrons we observe the expected Kondo peak at zero bias. For even numbers of electrons we generally observe Kondo-like features corresponding to excited states. For the latter, the excitation energy often decreases with gate voltage until a new zero-bias Kondo peak results. We ascribe this behavior to a singlet-triplet transition in zero magnetic field driven by the change of shape of the potential that confines the electrons in the SET.Comment: 4 p., 4 fig., 5 new ref. Rewrote 1st paragr. on p. 4. Revised author list. More detailed fit results on page 3. A plotting error in the horizontal axis of Fig. 1b and 3 was corrected, and so were the numbers in the text read from those fig. Fig. 4 was modified with a better temperature calibration (changes are a few percent). The inset of this fig. was removed as it is unnecessary here. Added remarks in the conclusion. Typos are correcte

    Temperature dependence of polarization relaxation in semiconductor quantum dots

    Full text link
    The decay time of the linear polarization degree of the luminescence in strongly confined semiconductor quantum dots with asymmetrical shape is calculated in the frame of second-order quasielastic interaction between quantum dot charge carriers and LO phonons. The phonon bottleneck does not prevent significantly the relaxation processes and the calculated decay times can be of the order of a few tens picoseconds at temperature T100T \simeq 100K, consistent with recent experiments by Paillard et al. [Phys. Rev. Lett. {\bf86}, 1634 (2001)].Comment: 4 pages, 4 figure

    Modified Perturbation Theory Applied to Kondo-Type Transport through a Quantum Dot under a Magnetic Field

    Full text link
    Linear conductance through a quantum dot is calculated under a finite magnetic field using the modified perturbation theory. The method is based on the second-order perturbation theory with respect to the Coulomb repulsion, but the self-energy is modified to reproduce the correct atomic limit and to fulfill the Friedel sum rule exactly. Although this method is applicable only to zero temperature in a strict sense, it is approximately extended to finite temperatures. It is found that the conductance near electron-hole symmetry is suppressed by the application of the magnetic field at low temperatures. Positive magnetoconductance is observed in the case of large electron-hole asymmetry.Comment: 4pages, 5 figure

    Spin-triplet superconductivity in repulsive Hubbard models with disconnected Fermi surfaces: a case study on triangular and honeycomb lattices

    Full text link
    We propose that spin-fluctuation-mediated spin-triplet superconductivity may be realized in repulsive Hubbard models with disconnected Fermi surfaces. The idea is confirmed for Hubbard models on triangular (dilute band filling) and honeycomb (near half-filling) lattices using fluctuation exchange approximation, where triplet pairing order parameter with f-wave symmetry is obtained. Possible relevance to real superconductors is suggested.Comment: 5 pages, 6 figures, RevTeX, uses epsf.sty and multicol.st

    Kondo Effect in Single Quantum Dot Systems --- Study with Numerical Renormalization Group Method ---

    Full text link
    The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo temperature for each orbital channel can be largely different. The tunneling through the Kondo resonance almost fully develops in the region T \lsim 0.1 T_{K}^{*} \sim 0.2 T_{K}^{*}, where TKT_{K}^{*} is the lowest Kondo temperature when the gate voltage is varied. At high temperatures the conductance changes to the usual Coulomb oscillations type. In the intermediate temperature region, the degree of the coherency of each orbital channel is different, so strange behaviors of the conductance can appear. For example, the conductance once increases and then decreases with temperature decreasing when it is suppressed at T=0 by the interference cancellation between different channels. The interaction effects in the quantum dot systems lead the sensitivities of the conductance to the temperature and to the gate voltage.Comment: 22 pages, 18 figures, LaTeX, to be published in J. Phys. Soc. Jpn. Vol. 67 No. 7 (1998

    Enhancement of Kondo effect in quantum dots with an even number of electrons

    Full text link
    We investigate the Kondo effect in a quantum dot with almost degenerate spin-singlet and triplet states for an even number of electrons. We show that the Kondo temperature as a function of the energy difference between the states Delta reaches its maximum around Delta=0 and decreases with increasing Delta. The Kondo effect is thus enhanced by competition between singlet and triplet states. Our results explain recent experimental findings. We evaluate the linear conductance in the perturbative regime.Comment: 5 pages; Phys. Rev. Lett., in pres

    Excess Kondo resonance in a quantum dot device with normal and superconducting leads: the physics of Andreev-normal co-tunneling

    Full text link
    We report on a novel Kondo phenomenon of interacting quantum dots coupled asymmetrically to a normal and a superconducting lead. The effects of intradot Coulomb interaction and Andreev tunneling give rise to Andreev bound resonances. As a result, a new type of co-tunneling process which we term Andreev-normal co-tunneling, is predicted. At low temperatures, coherent superposition of these co-tunneling processes induces a Kondo effect in which Cooper pairs directly participate formation of a spin singlet, leading to four Kondo resonance peaks in the local density of states, and enhancing the tunneling current.Comment: 4 pages, 2 figures, Late

    Orbital Kondo effect in carbon nanotubes

    Full text link
    Progress in the fabrication of nanometer-scale electronic devices is opening new opportunities to uncover the deepest aspects of the Kondo effect, one of the paradigmatic phenomena in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we demonstrate that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunneling. When orbital and spin degeneracies are simultaneously present, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU(4) symmetry.Comment: 26 pages, including 4+2 figure

    Many Body Effects on Electron Tunneling through Quantum Dots in an Aharonov-Bohm Circuit

    Full text link
    Tunneling conductance of an Aharonov-Bohm circuit including two quantum dots is calculated based on the general expression of the conductance in the linear response regime of the bias voltage. The calculation is performed in a wide temperature range by using numerical renormalization group method. Various types of AB oscillations appear depending on the temperature and the potential depth of the dots. Especially, AB oscillations have strong higher harmonics components as a function of the magnetic flux when the potential of the dots is deep. This is related to the crossover of the spin state due to the Kondo effect on quantum dots. When the temperature rises up, the amplitude of the AB oscillations becomes smaller reflecting the breaking of the coherency.Comment: 21 pages, 11 PostScript figures, LaTeX, uses jpsj.sty epsbox.st
    corecore