34 research outputs found

    Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity

    Get PDF
    Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression

    Altered Energy Homeostasis and Resistance to Diet-Induced Obesity in KRAP-Deficient Mice

    Get PDF
    Obesity and related metabolic disorders have become leading causes of adult morbidity and mortality. KRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule, however, its physiological roles remain unknown. Here we demonstrate that KRAP-deficient (KRAP−/−) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP−/− mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia. Notably, glucose uptake in the brown adipose tissue (BAT) in KRAP−/− mice is enhanced in an insulin-independent manner, suggesting that BAT is involved in altered energy homeostasis in KRAP−/− mice, although UCP (Uncoupling protein) expressions are not altered. Of interest is the down-regulation of fatty acid metabolism-related molecules, including acetyl-CoA carboxylase (ACC)-1, ACC-2 and fatty acid synthase in the liver of KRAP−/− mice, which could in part account for the metabolic phenotype in KRAP−/− mice. Thus, KRAP is a novel regulator in whole-body energy homeostasis and may be a therapeutic target in obesity and related diseases

    Human cell types important for Hepatitis C Virus replication in vivo and in vitro. Old assertions and current evidence

    Get PDF
    Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro
    corecore