51 research outputs found

    A Molecular and Preclinical Comparison of the PD-1 targeted T cell Checkpoint Inhibitors Nivolumab and Pembrolizumab

    Get PDF
    T cell checkpoint inhibition has a profound impact on cancer care and the two Programmed cell death protein 1 (PD-1) targeted antibodies nivolumab and pembrolizumab have been leading this therapeutic revolution. Their clinical comparability is a highly relevant topic of discussion, but to a significant degree is a consequence of their molecular properties. Here we provide a molecular, preclinical, and early clinical comparison of the two antibodies, based on the available data and recent literature. We acknowledge the limitations of such comparisons, but suggest that based on the available data, differences in clinical trial outcomes between nivolumab and pembrolizumab are more likely drug-independent than drug-dependent.Wellcome Trust Translational Medicine and Therapeutics Grant RJAG/07

    Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation

    Get PDF
    CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity

    Structural studies on the leukocyte co-stimulatory molecule, B7-1

    No full text
    B7-1 and B7-2 are glycoproteins expressed on antigen presenting cells. The binding of these molecules to the T-cell homodimers, CD28 and CTLA-4, generate 'costimulatory' and inhibitory signals in T cells, respectively. The crystal structure of the extracellular region of B7-1 (sB7-1), solved to 3 Angstrom resolution, consists of a novel combination of two Ig-like domains, one characteristic of adhesion molecules and the other previously seen only in antigen receptors. In the crystal lattice, sB7-1 unexpectedly forms parallel, 2-fold rotationally symmetric homodimers. The structural data suggest a mechanism whereby the avidity-enhanced binding of B7-1 and CTLA-4 homodimers, along with the relatively high affinity of these interactions, favours the formation of very stable inhibitory signaling complexes

    CD2 and the nature of protein interactions mediating cell-cell recognition.

    No full text
    Rapid progress has recently been made in characterising the structures of leukocyte cell-surface molecules. Detailed analyses of the structure and interactions of CD2 were the first involving a molecule that has not been directly linked to antigen recognition in the manner of antigen receptors or co-receptors. It seems highly likely that the properties of ligand binding by CD2 are relevant to the general mechanisms of cell-cell recognition. As an example of biological recognition, the defining characteristic of cell-cell contact is that it involves the simultaneous interaction of hundreds, if not thousands, of molecules. Affinity and kinetic analyses of ligand binding by CD2 indicated that the protein interactions mediating cell-cell contact, whilst highly specific, are much weaker than initially anticipated, probably due to the requirement that such contacts be easily reversible. Simultaneously, in addressing the mechanism of this mode of recognition, structural and mutational studies focussed on the role of charged residues clustered in the ligand-binding face of CD2, yielding the concept that electrostatic complementarity, rather than surface-shape complementarity, is the dominant feature of specific, low-affinity protein recognition at the cell surface by CD2. The crystallographic analysis of the CD2-binding domain of CD58 strongly supports this concept

    Crystallisation and functional analysis of a soluble deglycosylated form of the human costimulatory molecule B7-1

    No full text
    The interactions of B7-1 with CD28 and CTLA-4 modulate the course of human immune responses, making B7-1 an important target for developing structure-based therapeutics. B7-1 is, however, one of the most heavily glycosylated proteins found at the leukocyte cell surface, complicating the structural analysis of this molecule. Methods for the production, crystallization and selenomethionine labelling of a soluble deglycosylated form of this molecule are described. The protein readily forms both tetragonal plate and bipyramidal crystals belonging to space groups I4(1)22, with unit-cell parameters a = b = 56.9, c = 298.7 A, and P4(1)22 (or P4(3)22), with unit-cell parameters a = b = 89.0, c = 261.9 A, respectively. The I4(1)22 and primitive crystal forms diffract to 2.7 and 3.5 A, respectively. Surface plasmon resonance-based assays indicate that the ligand-binding properties of sB7-1 are unaffected by deglycosylation. Since none of the methods relied on any special structural properties of sB7-1, it is proposed that this novel combination of procedures could in principle be adapted to the systematic analysis of many other glycoproteins of structural or functional interest

    Effects of N-butyldeoxynojirimycin and the Lec3.2.8.1 mutant phenotype on N-glycan processing in Chinese hamster ovary cells: application to glycoprotein crystallization.

    No full text
    Heterologous gene expression in either (1) the glycosylation-defective, mutant Chinese hamster ovary cell line, Lec3.2.8.1, or (2) the presence of the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin facilitates the trimming of N-linked glycans of glycoproteins to single N-acetylglucosamine (GlcNAc) residues with endoglycosidase H (endo H). Both approaches are somewhat inefficient, however, with as little as 12% of the total protein being rendered fully endo H-sensitive under these conditions. It is shown here that the combined effects of these approaches on the restriction of oligosaccharide processing are essentially additive, thereby allowing the production of glycoproteins that are essentially completely endo H-sensitive. The preparation of a soluble chimeric form of CD58, the ligand of the human T-cell surface recognition molecule CD2, illustrates the usefulness of the combined approach when expression levels are low or the deglycosylated protein is unstable at low pH. The endo H-treated chimera produced crystals of space group P3(1)21 or P3(2)21, and unit cell dimensions a = b = 116.4 A, c = 51.4 A alpha = beta = 90 degrees , gamma = 120 degrees , that diffract to a maximum resolution of 1.8 A

    Effects of N-butyldeoxynojirimycin and the Lec3.2.8.1 mutant phenotype on N-glycan processing in Chinese hamster ovary cells: application to glycoprotein crystallization.

    No full text
    Heterologous gene expression in either (1) the glycosylation-defective, mutant Chinese hamster ovary cell line, Lec3.2.8.1, or (2) the presence of the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin facilitates the trimming of N-linked glycans of glycoproteins to single N-acetylglucosamine (GlcNAc) residues with endoglycosidase H (endo H). Both approaches are somewhat inefficient, however, with as little as 12% of the total protein being rendered fully endo H-sensitive under these conditions. It is shown here that the combined effects of these approaches on the restriction of oligosaccharide processing are essentially additive, thereby allowing the production of glycoproteins that are essentially completely endo H-sensitive. The preparation of a soluble chimeric form of CD58, the ligand of the human T-cell surface recognition molecule CD2, illustrates the usefulness of the combined approach when expression levels are low or the deglycosylated protein is unstable at low pH. The endo H-treated chimera produced crystals of space group P3(1)21 or P3(2)21, and unit cell dimensions a = b = 116.4 A, c = 51.4 A alpha = beta = 90 degrees , gamma = 120 degrees , that diffract to a maximum resolution of 1.8 A
    • …
    corecore