2,804 research outputs found

    On the origin of cosmic rays

    Get PDF
    Uniform and metagalactic cosmic ray models - halo, disk, and nonstationary galactic model

    Beam energy measurement at linear colliders using spin precession

    Get PDF
    Linear collider designs foresee some bends of about 5-10 mrad. The spin precession angle of one TeV electrons on 10 mrad bend is 23.2 rad and it changes proportional to the energy. Measurement of the spin direction using Compton scattering of laser light on electrons before and after the bend allows determining the beam energy with an accuracy about of 10^{-5}. In this paper the principle of the method, the procedure of the measurement and possible errors are discussed. Some remarks about importance of plasma focusing effects in the method of beam energy measurement using Moller scattering are given.Comment: 7 pages, Latex, 4 figures(.eps). In v.3 corresponds to journal publication. Talk at 26-th Advanced ICFA Beam Dynamic Workshop on Nanometre-Size Colliding Beams (Nanobeam2002), Lausanne, Switzerland, Sept 2-6, 200

    The Q2Q^2 dependence of the hard diffractive photoproduction of vector meson or photon and the range of pQCD validity

    Get PDF
    We consider two coupled problems. We study the dependence on photon virtuality Q2Q^2 for the semihard quasi--elastic photoproduction of neutral vector mesons on a quark, gluon or real photon (at sp2,  Q2;  p2μ2(0.3s\gg p_{\bot}^2,\;Q^2; \; p_{\bot}^2\gg \mu^2 \approx (0.3 GeV)2^2). To this end we calculate the corresponding amplitudes (in an analytical form) in the lowest nontrivial approximation of perturbative QCD. It is shown that the amplitude for the production of light meson varies very rapidly with the photon virtuality near Q2=0Q^2=0. We estimate the bound of the pQCD validity region for such processes. For the real incident photon the obtained bound for the ρ\rho meson production is very high. This bound decreases fast with the increase of Q2Q^2, and we expect that the virtual photoproduction at HERA gives opportunity to test the pQCD results. The signature of this region is discussed. For the hard Compton effect the pQCD should work good at not too high pp_{\bot}, and this effect seems measurable at HERA.Comment: ReVTeX, 36 pages, 5 Postscript figures, uses epsf.st

    High Energy Photon-Photon Collisions at a Linear Collider

    Full text link
    High intensity back-scattered laser beams will allow the efficient conversion of a substantial fraction of the incident lepton energy into high energy photons, thus significantly extending the physics capabilities of an electron-electron or electron-positron linear collider. The annihilation of two photons produces C=+ final states in virtually all angular momentum states. The annihilation of polarized photons into the Higgs boson determines its fundamental two-photon coupling as well as determining its parity. Other novel two-photon processes include the two-photon production of charged lepton pairs, vector boson pairs, as well as supersymmetric squark and slepton pairs and Higgstrahlung. The one-loop box diagram leads to the production of pairs of neutral particles. High energy photon-photon collisions can also provide a remarkably background-free laboratory for studying possibly anomalous WWW W collisions and annihilation. In the case of QCD, each photon can materialize as a quark anti-quark pair which interact via multiple gluon exchange. The diffractive channels in photon-photon collisions allow a novel look at the QCD pomeron and odderon. Odderon exchange can be identified by looking at the heavy quark asymmetry. In the case of electron-photon collisions, one can measure the photon structure functions and its various components. Exclusive hadron production processes in photon-photon collisions test QCD at the amplitude level and measure the hadron distribution amplitudes which control exclusive semi-leptonic and two-body hadronic B-decays.Comment: Invited talk, presented at the 5th International Workshop On Electron-Electron Interactions At TeV Energies, Santa Cruz, California, 12-14 December 200

    Detecting photon-photon scattering in vacuum at exawatt lasers

    Full text link
    In a recent paper, we have shown that the QED nonlinear corrections imply a phase correction to the linear evolution of crossing electromagnetic waves in vacuum. Here, we provide a more complete analysis, including a full numerical solution of the QED nonlinear wave equations for short-distance propagation in a symmetric configuration. The excellent agreement of such a solution with the result that we obtain using our perturbatively-motivated Variational Approach is then used to justify an analytical approximation that can be applied in a more general case. This allows us to find the most promising configuration for the search of photon-photon scattering in optics experiments. In particular, we show that our previous requirement of phase coherence between the two crossing beams can be released. We then propose a very simple experiment that can be performed at future exawatt laser facilities, such as ELI, by bombarding a low power laser beam with the exawatt bump.Comment: 8 pages, 6 figure

    Physics at the Linear Collider

    Get PDF
    The physics at the planned e+ee^+e^- colliders is discussed around three main topics corresponding to different manifestations of symmetry breaking: WW physics in the no Higgs scenario, studies of the properties of the Higgs and precision tests of SUSY. A comparison with the LHC is made for all these cases. The γγ\gamma \gamma mode of the linear collider will also be reviewed.Comment: 31 pages, 12 figures. Invited talk given at the Fifth Workshop on High Energy Physics Phenomenology, Inter-University Centre for Astronomy and Astrophysics, Pune, India, January 12 - 26, 199

    The visible effect of a very heavy magnetic monopole at colliders

    Get PDF
    If a heavy Dirac monopole exists, the light-to-light scattering below the monopole production threshold is enhanced due to strong coupling of monopoles to photons. At the next Linear Collider with electron beam energy 250 GeV this photon pair production could be observable at monopole masses less than 2.5-6.4 TeV in the e+ee^+e^- mode or 3.7-10 TeV in the γγ\gamma\gamma mode, depending on the monopole spin. At the upgraded Tevatron such an effect is expected to be visible at monopole masses below 1-2.5 TeV. The strong dependence on the initial photon polarizations allows to find the monopole spin in experiments at e+ee^+e^- and γγ\gamma\gamma colliders. We consider the ZγZ\gamma production and the 3γ3\gamma production at e+ee^+e^- and pppp or ppˉp\bar{p} colliders via the same monopole loop. The possibility to discover these processes is significantly lower than that of the γγ\gamma\gamma case.Comment: 18 pages, 2 figures, RevTe

    Dependence of the critical temperature on the Higgs field reparametrization

    Full text link
    We show that, despite of the reparametrization symmetry of the Lagrangian describing the interaction between a scalar field and gauge vector bosons, the dynamics of the Higgs mechanism is really affected by the representation gauge chosen for the Higgs field. Actually, we find that, varying the parametrization for the two degrees of freedom of the complex scalar field, we obtain different expressions for the Higgs mass: in its turn this entails different expressions for the critical temperatures, ranging from zero to a maximum value, as well as different expressions for other basic thermodynamical quantities.Comment: revtex, 12 pages, 2 eps figure

    TeV-scale electron Compton scattering in the Randall-Sundrum scenario

    Get PDF
    The spin-2 graviton excitations in the Randall-Sundrum gravity model provides a t-channel contribution to electron Compton scattering which competes favourably with the standard QED contributions. The phenomenological implications of these contributions to the unpolarized and polarized cross-sections are evaluated.Comment: 11 pages, 5 figure
    corecore