224,025 research outputs found

    Electromagnetic Meson Form Factors in the Salpeter Model

    Get PDF
    We present a covariant scheme to calculate mesonic transitions in the framework of the Salpeter equation for qqˉq\bar{q}-states. The full Bethe Salpeter amplitudes are reconstructed from equal time amplitudes which were obtained in a previous paper\cite{Mue} by solving the Salpeter equation for a confining plus an instanton induced interaction. This method is applied to calculate electromagnetic form factors and decay widths of low lying pseudoscalar and vector mesons including predictions for CEBAF experiments. We also describe the momentum transfer dependence for the processes π0,η,ηâ€Č→γγ∗\pi^0,\eta,\eta'\rightarrow\gamma\gamma^*.Comment: 22 pages including 10 figure

    Level-crossing spectroscopy of the 7, 9, and 10D_5/2 states of 133Cs and validation of relativistic many-body calculations of the polarizabilities and hyperfine constants

    Get PDF
    We present an experimental and theoretical investigation of the polarizabilities and hyperfine constants of D_J states in 133Cs for J=3/2 and J=5/2. New experimental values for the hyperfine constant A are obtained from level-crossing signals of the (7,9,10)D_5/2 states of 133Cs and precise calculations of the tensor polarizabilities alpha_2. The results of relativistic many-body calculations for scalar and tensor polarizabilities of the (5-10)D_3/2 and (5-10)D_5/2 states are presented and compared with measured values from the literature. Calculated values of the hyperfine constants A for these states are also presented and checked for consistency with experimental values.Comment: 12 pages, revtex4, 11 figure file

    Neutrino mass, proton decay and dark matter in TeV scale universal extra dimension models

    Get PDF
    We show how the problem of small neutrino masses and suppressed proton decay can be simultaneously resolved in 6-D universal extra dimension models (UED) with a low fundamental scale using extended gauge groups that contain the local B−LB-L symmetry. The extra space dimensions are compactified either on a T2/Z2T^2/Z_2 or T2/Z2×Z2â€ČT^2/Z_2\times Z'_2 orbifold depending on whether the full gauge group is SU(2)L×U(1)I3R×U(1)B−LSU(2)_L\times U(1)_{I_{3R}}\times U(1)_{B-L} or SU(2)L×SU(2)R×U(1)B−LSU(2)_L\times SU(2)_{R}\times U(1)_{B-L}. In both cases, neutrino masses are suppressed by an appropriate orbifold parity assignment for the standard model singlet neutrinos and the proton decay rate is suppressed due to a residual discrete symmetry left over from compactification. For lower values of the fundamental scale, a dominant decay mode of the neutron is n→3Îœn\to 3 \nu. An interesting consequence of the model is a possible two component picture for dark matter of the universe.Comment: 25 pages, two minor typos correcte

    Solitons on the edge of a two-dimensional electron system

    Full text link
    We present a study of the excitations of the edge of a two-dimensional electron droplet in a magnetic field in terms of a contour dynamics formalism. We find that, beyond the usual linear approximation, the non-linear analysis yields soliton solutions which correspond to uniformly rotating shapes. These modes are found from a perturbative treatment of a non-linear eigenvalue problem, and as solutions to a modified Korteweg-de Vries equation resulting from a local induction approximation to the nonlocal contour dynamics. We discuss applications to the edge modes in the quantum Hall effect.Comment: 4 pages, 2 eps figures (included); to appear in Phys. Rev. Letter

    Hierarchies without Symmetries from Extra Dimensions

    Get PDF
    It is commonly thought that small couplings in a low-energy theory, such as those needed for the fermion mass hierarchy or proton stability, must originate from symmetries in a high-energy theory. We show that this expectation is violated in theories where the Standard Model fields are confined to a thick wall in extra dimensions, with the fermions "stuck" at different points in the wall. Couplings between them are then suppressed due to the exponentially small overlaps of their wave functions. This provides a framework for understanding both the fermion mass hierarchy and proton stability without imposing symmetries, but rather in terms of higher dimensional geography. A model independent prediction of this scenario is non-universal couplings of the Standard Model fermions to the ``Kaluza-Klein'' excitations of the gauge fields. This allows a measurement of the fermion locations in the extra dimensions at the LHC or NLC if the wall thickness is close to the TeV scale.Comment: 25 pages, 7 figure

    Fractional Generalization of Gradient Systems

    Full text link
    We consider a fractional generalization of gradient systems. We use differential forms and exterior derivatives of fractional orders. Examples of fractional gradient systems are considered. We describe the stationary states of these systems.Comment: 11 pages, LaTe

    Complex X-ray Absorption and the Fe Kalpha Profile in NGC 3516

    Full text link
    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and Nov. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of ~1100 km/s has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (~2.5 x 10E23 cm^-2) of highly ionized gas with a covering fraction ~50%. This low covering fraction suggests that the absorber lies within a few lt-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the Nov dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.Comment: 33 pages, 9 figures, accepted for publication in Ap

    Dynamical Casimir Effect with Semi-Transparent Mirrors, and Cosmology

    Full text link
    After reviewing some essential features of the Casimir effect and, specifically, of its regularization by zeta function and Hadamard methods, we consider the dynamical Casimir effect (or Fulling-Davis theory), where related regularization problems appear, with a view to an experimental verification of this theory. We finish with a discussion of the possible contribution of vacuum fluctuations to dark energy, in a Casimir like fashion, that might involve the dynamical version.Comment: 11 pages, Talk given in the Workshop ``Quantum Field Theory under the Influence of External Conditions (QFEXT07)'', Leipzig (Germany), September 17 - 21, 200

    Thermal Background Corrections to the Neutrino Electromagnetic Vertex in Models with Charged Scalar Bosons

    Full text link
    We calculate the correction to the neutrino electromagnetic vertex due to background of electrons in a large class of models, as the supersymmetric model with explicit breaking of R-parity, where charged scalar bosons couple to leptons and which are able to provide an astrophysically interesting value for the neutrino magnetic (electric) moment, ΌΜ∌10−12 ΌB\mu_\nu\sim 10^{-12}\:\mu_B. We show that the medium contribution to the chirality flipping magnetic (electric) dipole moment is not significant, however a new chirality flipping, but helicity conserving, term arises. It signals the presence of CP{\cal CP} and CPT{\cal CPT} asymmetries in the medium and is associated to the longitudinal photon and therefore disappears in the vacuum. We estimate the contribution of this new term to the rate of the plasmon decay process Îłpl→ΜΜ\gamma_{pl}\rightarrow \nu\nu in the core of degenerate stars, showing that it can be comparable with the contribution coming from the vacuum magnetic (dipole) moment. We also calculate the correction to the effective potential of a propagating neutrino in presence of a magnetic field due to a chirality preserving contribution to the diagonal magnetic moment from the medium. This contribution is identical for particles and antiparticles and so need not to vanish for Majorana neutrinos.Comment: DFPD 93/TH/75, SISSA 93/183/A preprint, 25 pages + 4 figures available by e-mail reques
    • 

    corecore