1,152 research outputs found

    Modeling Building Block Interdependency

    No full text
    The Building-Block Hypothesis appeals to the notion of problem decomposition and the assembly of solutions from sub-solutions. Accordingly, there have been many varieties of GA test problems with a structure based on building-blocks. Many of these problems use deceptive fitness functions to model interdependency between the bits within a block. However, very few have any model of interdependency between building-blocks; those that do are not consistent in the type of interaction used intra-block and inter-block. This paper discusses the inadequacies of the various test problems in the literature and clarifies the concept of building-block interdependency. We formulate a principled model of hierarchical interdependency that can be applied through many levels in a consistent manner and introduce Hierarchical If-and-only-if (H-IFF) as a canonical example. We present some empirical results of GAs on H-IFF showing that if population diversity is maintained and linkage is tight then the GA is able to identify and manipulate building-blocks over many levels of assembly, as the Building-Block Hypothesis suggests

    Steady-State ALPS for Real-Valued Problems

    Get PDF
    The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs

    Creating Complex Building Blocks through Generative Representation

    Get PDF
    One of the main limitations for the functional scalability of computer automated design systems is the representation used for encoding designs. Using computer programs as an analogy, representations can be thought of as having the properties of combination, control-flow and abstraction. We define generative representations as those which have the ability to reuse elements in an encoding through either iteration or abstraction and argue that reuse improves functional scalability by allowing the representation to construct buildingblocks and capture design dependencies. Next we describe GENRE, an evolutionary design system for evolving a variety of different types of designs. Using this system we compare the generative representation against a non-generative representation on evolving tables and robots and show that designs evolved with the generative representation have higher fitness than designs created with the non-generative representation. Further, we show that designs evolved with the generative representation are constructed in a modular way through the reuse of discovered building blocks

    Generative Representations for Computer-Automated Evolutionary Design

    Get PDF
    With the increasing computational power of computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design systems is the representation with which they encode designs. If the representation cannot encode a certain design, then the design system cannot produce it. To be able to produce new types of designs, and not just optimize pre-defined parameterizations, evolutionary design systems must use generative representations. Generative representations are assembly procedures, or algorithms, for constructing a design thereby allowing for truly novel design solutions to be encoded. In addition, by enabling modularity, regularity and hierarchy, the level of sophistication that can be evolved is increased. We demonstrate the advantages of generative representations on two different design domains: the evolution of spacecraft antennas and the evolution of 3D objects

    A Modular Robotic System with Applications to Space Exploration

    Get PDF
    Modular robotic systems offer potential advantages as versatile, fault-tolerant, cost-effective platforms for space exploration, but a sufficiently mature system is not yet available. We describe the possible applications of such a system, and present prototype hardware intended as a step in the right direction. We also present elements of an automated design and optimization framework aimed at making modular robots easier to design and use, and discuss the results of applying the system to a gait optimization problem. Finally, we discuss the potential near-term applications of modular robotics to terrestrial robotics research

    Emergency cross-cover of surgical specialties: Consensus recommendations by the Association of Surgeons in Training

    Get PDF
    AbstractIn recent years, working time restrictions and a restructuring of postgraduate surgical training have resulted in increased reliance on emergency cross-cover (ECC) – the provision of emergency care by a doctor trained or training in a different specialty to that which they are requested to assess or manage. There are increasing concerns surrounding the provision of ECC, particularly regarding appropriate supervision of trainees and in turn their competence, experience and confidence in dealing with surgical problems of outside their own specialty. Surgical training has failed to keep pace with workforce changes and in this document we outline the key principles of providing safe ECC. In particular this includes the medico-legal implications of providing such cover outside a surgical trainee's normal area of practice, particularly without previous experience or means for regular skills practice and up-dating. We report the findings of an ASiT snapshot survey that demonstrates concerns surrounding existing cross-cover arrangements. Variable access to senior support, together with varied willingness to provide this, and a paucity of specific training opportunities for trainees required to provide cross-cover were highlighted. These have the potential to promote variability in patient care and resource use by those providing care outside of their usual specialty. This document provides consensus recommendations to address these issues, including clarification of curricula and improved provision of training for, and supervision of, trainees who are expected to deliver cross-cover

    Photon rockets and gravitational radiation

    Full text link
    The absence of gravitational radiation in Kinnersley's ``photon rocket'' solution of Einstein's equations is clarified by studying the mathematically well-defined problem of point-like photon rockets in Minkowski space (i.e. massive particles emitting null fluid anisotro\-pically and accelerating because of the recoil). We explicitly compute the (uniquely defined) {\it linearized} retarded gravitational waves emitted by such objects, which are the coherent superposition of the gravitational waves generated by the motion of the massive point-like rocket and of those generated by the energy-momentum distribution of the photon fluid. In the special case (corresponding to Kinnersley's solution) where the anisotropy of the photon emission is purely dipolar we find that the gravitational wave amplitude generated by the energy-momentum of the photons exactly cancels the usual 1/r1/r gravitational wave amplitude generated by the accelerated motion of the rocket. More general photon anisotropies would, however, generate genuine gravitational radiation at infinity. Our explicit calculations show the compatibility between the non-radiative character of Kinnersley's solution and the currently used gravitational wave generation formalisms based on post-Minkowskian perturbation theory.Comment: 21 pages, LATEX, submitted to Class. Quant. Gra

    A novel method for the quantitative morphometric characterization of soluble salts on volcanic ash

    Get PDF
    <jats:title>Abstract</jats:title><jats:p>Formation of soluble sulfate and halide salts on volcanic ash particles via syn-eruptive interactions between ash surfaces and magmatic gases is a ubiquitous phenomenon in explosive eruptions. Surficial salts may be rapidly mobilized into their depositional environment undermining the quality of drinking water, harming aquatic life, and damaging soil and vegetation. Assessment of the potential for salt formation on ash and related environmental impacts have been based almost exclusively on bulk mineralogical or chemical analyses of ash; similarly, quantification of surficial salts has been made via leachate analysis only. However, it is the ash surface state and salt crystal properties that exert the predominant control on its reactivity, thus in determining their immediate environmental impact. Here, using scanning electron microscope (SEM) images, we present a novel image analysis protocol for the quantitative characterization of surficial salts, together with chemical analyses of resulting leachates. As volcanic ash proxies, we used synthetic rhyolitic glass particles (with systematic variations in FeO<jats:sub>T</jats:sub> and CaO content) and a crushed obsidian. Using an ash-gas reactor, we artificially surface-loaded samples with CaSO<jats:sub>4</jats:sub> and NaCl crystals, the most common crystal phases found on volcanic ash surfaces. Analogous variations were found using both methods: for CaSO<jats:sub>4</jats:sub> crystals, higher temperature treatments or increasing FeO<jats:sub>T</jats:sub> content at the same temperature led to higher concentrations of salt leachate and higher salt volumes; unexpectedly, increasing the CaO content caused only a minor increase in salt formation. In addition to bulk salt formation, morphometric results provided insight into formation processes, nucleation and growth rates, and limiting factors for salt formation. Higher temperatures increased CaSO<jats:sub>4</jats:sub> crystal size and surface coverage which we infer to result from higher element mobility in the glasses driving crystal growth. Increasing FeO<jats:sub>T</jats:sub> content of the glasses yielded increased salt surface coverage and leachate concentrations, but decreased crystal size (i.e., the salt number density increased). This latter effect likely relates to the role of iron as an electron-donor to charge balance salt-forming cation migration to the ash surface, indicating the importance of iron in determining surface reaction site density and, consequently, environmental reactivity. The controlling roles of ash composition and temperature on salt formation observed here can improve estimations for surface salt formation, volatile scavenging, and environmental impact for eruptions producing glass-rich ash. Our characterization protocol can therefore become a useful tool for the investigation of solid–gas reactions for terrestrial and planetary processes, and it also appears to be a powerful complement to research into atmospheric processes mediated by ash surfaces, such as ash aggregation and nucleation of water or ice on ash.</jats:p&gt
    • …
    corecore