644 research outputs found

    Dysfunctional HDL and progression of atherosclerosis in HIV-1-infected and -uninfected adults

    Get PDF
    Background: HDL function rather than absolute level may be a more accurate indicator for risk of developing atherosclerosis. Dysfunctional HDL has increased redox activity and reduced antioxidant properties, but it is unknown whether abnormal HDL function is associated with progression of atherosclerosis in HIV-1-infected subjects. Findings: We retrospectively measured serum HDL function in 91 subjects from a prospective 3-year study of carotid artery intima-media thickness (CIMT), which enrolled triads of risk factor-matched persons that were HIV-1-uninfected (n=36) or HIV-1+ with (n=29) or without (n=26) protease inhibitor (PI)-based therapy for ≥ 2 years. HDL function was assessed using a biochemical assay that measures the oxidation of dihydrorhodamine 123 (DHR oxidation rate, DOR), in which higher DOR readout corresponds to dysfunctional HDL phenotype. There were no significant associations between DOR and HIV-1 infection. In univariate analysis of 55 HIV-1-infected subjects, greater waist circumference and lower serum HDL were significantly associated with higher baseline levels of DOR (p=0.01). These subjects had significant increases in levels of DOR over time (3 years) that were associated with white race (p=0.03), higher nadir CD4 count (p0.1) (DOR), were significantly associated (p=0.02) with progression of CIMT. Conclusion: In a small matched cohort study of HIV-1-infected subjects who had a low cardiovascular risk profile, HDL function changed over time and was independently associated with anthropometric parameters of obesity but not with progression of CIMT

    TOPSAN: a dynamic web database for structural genomics

    Get PDF
    The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN’s content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org

    Prevention of diseases after menopause

    Get PDF
    AbstractWomen may expect to spend more than a third of their lives after menopause. Beginning in the sixth decade, many chronic diseases will begin to emerge, which will affect both the quality and quantity of a woman's life. Thus, the onset of menopause heralds an opportunity for prevention strategies to improve the quality of life and enhance longevity. Obesity, metabolic syndrome and diabetes, cardiovascular disease, osteoporosis and osteoarthritis, cognitive decline, dementia and depression, and cancer are the major diseases of concern. Prevention strategies at menopause have to begin with screening and careful assessment for risk factors, which should also include molecular and genetic diagnostics, as these become available. Identification of certain risks will then allow directed therapy. Evidence-based prevention for the diseases noted above include lifestyle management, cessation of smoking, curtailing excessive alcohol consumption, a healthy diet and moderate exercise, as well as mentally stimula..

    Alterations in Platelet Function and Cell-Derived Microvesicles in Recently Menopausal Women: Relationship to Metabolic Syndrome and Atherogenic Risk

    Get PDF
    A woman’s risk for metabolic syndrome (MS) increases at menopause, with an associated increase in risk for cardiovascular disease. We hypothesized that early menopause-related changes in platelet activity and concentrations of microvesicles derived from activated blood and vascular cells provide a mechanistic link to the early atherothrombotic process. Thus, platelet functions and cellular origin of blood-borne microvesicles in recently menopausal women (n = 118) enrolled in the Kronos Early Estrogen Prevention Study were correlated with components of MS and noninvasive measures of cardiovascular disease [carotid artery intima medial thickness (CIMT), coronary artery calcium (CAC) score, and endothelial reactive hyperemic index (RHI)]. Specific to individual components of the MS pentad, platelet number increased with increasing waist circumference, and platelet secretion of ATP and expression of P-selectin decreased with increasing blood glucose (p = 0.005) and blood pressure (p < 0.05), respectively. Waist circumference and systolic blood pressure were independently associated with monocyte- and endothelium-derived microvesicles (p < 0.05). Platelet-derived and total procoagulant phosphatidylserine-positive microvesicles, and systolic blood pressure correlated with CIMT (p < 0.05), but not with CAC or RHI. In summary, among recently menopausal women, specific platelet functions and concentrations of circulating activated cell membrane-derived procoagulant microvesicles change with individual components of MS. These cellular changes may explain in part how menopause contributes to MS and, eventually, to cardiovascular disease

    RNF43 is frequently mutated in colorectal and endometrial cancers

    Get PDF
    We report somatic mutations of RNF43 in over 18% of colorectal adenocarcinomas and endometrial carcinomas. RNF43 encodes an E3 ubiquitin ligase that negatively regulates Wnt signaling. Truncating mutations of RNF43 are more prevalent in microsatellite-unstable tumors and show mutual exclusivity with inactivating APC mutations in colorectal adenocarcinomas. These results indicate that RNF43 is one of the most commonly mutated genes in colorectal and endometrial cancers.National Human Genome Research Institute (U.S.) (Grant U54HG003067

    Using Basic Science to Design a Clinical Trial: Baseline Characteristics of Women Enrolled in the Kronos Early Estrogen Prevention Study (KEEPS)

    Get PDF
    Observational and epidemiological studies suggest that menopausal hormone therapy (MHT) reduces cardiovascular disease (CVD) risk. However, results from prospective trials showed neutral or adverse effects most likely due to differences in participant demographics, such as age, timing of initiation of treatment, and preexisting cardiovascular disease, which reflected in part the lack of basic science information on mechanisms of action of hormones on the vasculature at the time clinical trials were designed. The Kronos Early Estrogen Replacement Study (KEEPS) is a prospective, randomized, controlled trial designed, using findings from basic science studies, to test the hypothesis that MHT when initiated early in menopause reduces progression of atherosclerosis. KEEPS participants are younger, healthier, and within 3 years of menopause thus matching more closely demographics of women in prior observational and epidemiological studies than women in the Women’s Health Initiative hormone trials. KEEPS will provide information relevant to the critical timing hypothesis for MHT use in reducing risk for CVD

    Associations between retinol-binding protein 4 and cardiometabolic risk factors and subclinical atherosclerosis in recently postmenopausal women: cross-sectional analyses from the KEEPS study

    Get PDF
    Background: The published literature regarding the relationships between retinol-binding protein 4 (RBP4) and cardiometabolic risk factors and subclinical atherosclerosis is conflicting, likely due, in part, to limitations of frequently used RBP4 assays. Prior large studies have not utilized the gold-standard western blot analysis of RBP4 levels. Methods: Full-length serum RBP4 levels were measured by western blot in 709 postmenopausal women screened for the Kronos Early Estrogen Prevention Study. Cross-sectional analyses related RBP4 levels to cardiometabolic risk factors, carotid artery intima-media thickness (CIMT), and coronary artery calcification (CAC). Results: The mean age of women was 52.9 (± 2.6) years, and the median RBP4 level was 49.0 (interquartile range 36.9-61.5) μg/mL. Higher RBP4 levels were weakly associated with higher triglycerides (age, race, and smokingadjusted partial Spearman correlation coefficient = 0.10; P = 0.01), but were unrelated to blood pressure, cholesterol, C-reactive protein, glucose, insulin, and CIMT levels (all partial Spearman correlation coefficients ≤0.06, P \u3e 0.05). Results: suggested a curvilinear association between RBP4 levels and CAC, with women in the bottom and upper quartiles of RBP4 having higher odds of CAC (odds ratio [95% confidence interval] 2.10 [1.07-4.09], 2.00 [1.02-3.92], 1.64 [0.82-3.27] for the 1st, 3rd, and 4th RBP4 quartiles vs. the 2nd quartile). However, a squared RBP4 term in regression modeling was non-significant (P = 0.10). Conclusions: In these healthy, recently postmenopausal women, higher RBP4 levels were weakly associated with elevations in triglycerides and with CAC, but not with other risk factors or CIMT. These data using the gold standard of RBP4 methodology only weakly support the possibility that perturbations in RBP4 homeostasis may be an additional risk factor for subclinical coronary atherosclerosis

    Stepwise-edited, human melanoma models reveal mutations' effect on tumor and microenvironment.

    Get PDF
    Establishing causal relationships between genetic alterations of human cancers and specific phenotypes of malignancy remains a challenge. We sequentially introduced mutations into healthy human melanocytes in up to five genes spanning six commonly disrupted melanoma pathways, forming nine genetically distinct cellular models of melanoma. We connected mutant melanocyte genotypes to malignant cell expression programs in vitro and in vivo, replicative immortality, malignancy, rapid tumor growth, pigmentation, metastasis, and histopathology. Mutations in malignant cells also affected tumor microenvironment composition and cell states. Our melanoma models shared genotype-associated expression programs with patient melanomas, and a deep learning model showed that these models partially recapitulated genotype-associated histopathological features as well. Thus, a progressive series of genome-edited human cancer models can causally connect genotypes carrying multiple mutations to phenotype

    SGC - Structural Biology and Human Health: A New Approach to Publishing Structural Biology Results

    Get PDF
    The Structural Genomics Consortium (SGC) is a not-for-profit, public-private partnership established to deliver novel structural biology knowledge on proteins of medical relevance and place this information into the public domain without restriction, spearheading the concept of "Open-Source Science" to enable drug discovery. The SGC is a major provider of structural information focussed on proteins related to human health, contributing 20.5% of novel structures released by the PDB in 2008. In this article we describe the PLoS ONE Collection entitled 'Structural Biology and Human Health: Medically Relevant Proteins from the SGC'. This Collection contains a series of articles documenting many of the novel protein structures determined by the SGC and work to further characterise their function. Each article in this Collection can be read in an enhanced version where we have integrated our interactive and intuitive 3D visualisation platform, known as iSee. This publishing platform enables the communication of complex structural biology and related data to a wide audience of non-structural biologists. With the use of iSee as the first example of an interactive and intuitive 3D document publication method as part of PLoS ONE, we are pushing the boundaries of structural biology data delivery and peer-review. Our strong desire is that this step forward will encourage others to consider the need for publication of three dimensional and associated data in a similar manner. © 2009 Lee et al

    Activating mTOR Mutations in a Patient with an Extraordinary Response on a Phase I Trial of Everolimus and Pazopanib

    Get PDF
    Understanding the genetic mechanisms of sensitivity to targeted anticancer therapies may improve patient selection, response to therapy, and rational treatment designs. One approach to increase this understanding involves detailed studies of exceptional responders: rare patients with unexpected exquisite sensitivity or durable responses to therapy. We identified an exceptional responder in a phase I study of pazopanib and everolimus in advanced solid tumors. Whole-exome sequencing of a patient with a 14-month complete response on this trial revealed two concurrent mutations in mTOR, the target of everolimus. In vitro experiments demonstrate that both mutations are activating, suggesting a biologic mechanism for exquisite sensitivity to everolimus in this patient. The use of precision (or “personalized”) medicine approaches to screen patients with cancer for alterations in the mTOR pathway may help to identify subsets of patients who may benefit from targeted therapies directed against mTOR.National Human Genome Research Institute (U.S.) (5U54HG003067-11
    corecore