10 research outputs found

    Optimization of insect cell based protein production processes - online monitoring, expression systems, scale-up

    Get PDF
    Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale-up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes

    Plant Cell Culture Monitoring Using an in Situ Multiwavelength Fluorescence Probe

    No full text

    Analysis of Catharanthus roseus alkaloids by HPLC

    No full text

    Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations

    No full text
    Fed-batch cultivations of Streptomyces coelicolor, producing the antibiotic actinorhodin, were monitored online by multiwavelength fluorescence spectroscopy and off-gas analysis. Partial least squares (PLS), locally weighted regression, and multilinear PLS (N-PLS) models were built for prediction of biomass and substrate (casamino acids) concentrations, respectively. The effect of combination of fluorescence and gas analyzer data as well as of different variable selection methods was investigated. Improved prediction models were obtained by combination of data from the two sensors and by variable selection using a genetic algorithm, interval PLS, and the principal variables method, respectively. A stepwise variable elimination method was applied to the three-way fluorescence data, resulting in simpler and more accurate N-PLS models. The prediction models were validated using leave-one-batch-out cross-validation, and the best models had root mean square error of cross-validation values of 1.02 g l(-1) biomass and 0.8 g l(-1) total amino acids, respectively. The fluorescence data were also explored by parallel factor analysis. The analysis revealed four spectral profiles present in the fluorescence data, three of which were identified as pyridoxine, NAD(P)H, and flavin nucleotides, respectively
    corecore