451 research outputs found
Local spin and charge properties of beta-Ag0.33V2O5 studied by 51V NMR
Local spin and charge properties were studied on beta-Ag0.33V2O5, a
pressure-induced superconductor, at ambient pressure using 51V-NMR and
zero-field-resonance (ZFR) techniques. Three inequivalent Vi sites (i=1, 2, and
3) were identified from 51V-NMR spectra and the principal axes of the
electric-field-gradient (EFG) tensor were determined in a metallic phase and
the following charge-ordering phase. We found from the EFG analysis that the V1
sites are in a similar local environment to the V3 sites. This was also
observed in ZFR spectra as pairs of signals closely located with each other.
These results are well explained by a charge-sharing model where a 3d1 electron
is shared within a rung in both V1-V3 and V2-V2 two-leg ladders.Comment: 12pages, 16figure
Tissue factor activates the coagulation cascade in mouse models of acute promyelocytic leukemia
Acute promyelocytic leukemia (APL) is associated with a high risk of bleeding and thrombosis. APL patients have an activated coagulation system, hyperfibrinolysis, and thrombocytopenia. APL cells express tissue factor (TF), a receptor and cofactor for factor VII/VIIa. This study had 2 goals. Firstly, we measured biomarkers of coagulation and fibrinolysis activation as well as platelet counts and bleeding in both mouse xenograft and allograft models of APL. Secondly, we determined the effect of inhibiting TF on the activation of coagulation in these models. We observed increased levels of plasma thrombin-antithrombin complexes (TAT), D-dimer, and plasmin-antiplasmin complexes, reduced platelet counts, and increased tail bleeding in both mouse models of APL. Fibrinogen levels decreased in the xenograft model but not in the allograft model. In contrast, the red blood cell count decreased in the allograft model but not in the xenograft model. Inhibition of APL-derived human TF with an anti-human TF monoclonal antibody reduced the level of TAT, increased platelet count, and normalized tail bleeding in a xenograft model. Inhibition of all sources of TF (APL cells and host cells) in the allograft model with a rat anti-mouse TF monoclonal antibody decreased the levels of TAT but did not affect the platelet count. Our study demonstrates that TF plays a central role in the activation of coagulation in both the xenograft and allograft mouse models of APL. These APL mouse models can be used to investigate the mechanisms of coagulopathy and thrombocytopenia in APL
NMR study of the layered cobalt oxyphosphide Sr2Sc(Co1-xFex)PO3
We report the results of 31P-nuclear magnetic resonance (NMR) measurements on the layered cobalt oxyphosphide Sr2Sc(Co1βxFex)PO3 in order to investigate the magnetic properties at low temperatures from a microscopic view point. The 31P-Knight shifts measured at the resonance peak maximum of Sr2Sc(Co1βxFex)PO3 have positive values and are T-independent in an entire temperature range, and the absolute value decreases with increasing Fe content. Also, the nuclear spin-lattice relaxation rate 1/T1 is almost proportional to the temperature at low temperatures. The magnitude of 1/T1T decreases with increasing the Fe content, which suggests the decrease of the density of states around the Fermi level
Extension of Incremental Linear Discriminant Analysis to Online Feature Extraction under Nonstationary Environments
In this paper, a new approach to an online feature extraction under nonstationary environments is proposed by extending Incremental Linear Discriminant Analysis (ILDA). The extended ILDA not only detect so-called βconcept driftsβ but also transfer the knowledge on discriminant feature spaces of the past concepts to construct good feature spaces. The performance of the extended ILDA is evaluated for the benchmark datasets including sudden changes and reoccurrence in concepts
Roles of Coagulation Proteases and PARs (Protease-Activated Receptors) in Mouse Models of Inflammatory Diseases
Activation of the blood coagulation cascade leads to fibrin deposition and platelet activation that are required for hemostasis. However, aberrant activation of coagulation can lead to thrombosis. Thrombi can cause tissue ischemia, and fibrin degradation products and activated platelets can enhance inflammation. In addition, coagulation proteases activate cells by cleavage of PARs (protease-activated receptors), including PAR1 and PAR2. Direct oral anticoagulants have recently been developed to specifically inhibit the coagulation proteases FXa (factor Xa) and thrombin. Administration of these inhibitors to wild-type mice can be used to determine the roles of FXa and thrombin in different inflammatory diseases. These results can be compared with the phenotypes of mice with deficiencies of either Par1 (F2r) or Par2 (F2rl1). However, inhibition of coagulation proteases will have effects beyond reducing PAR signaling, and a deficiency of PARs will abolish signaling from all proteases that activate these receptors. We will summarize studies that examine the roles of coagulation proteases, particularly FXa and thrombin, and PARs in different mouse models of inflammatory disease. Targeting FXa and thrombin or PARs may reduce inflammatory diseases in humans
Matrin 3 and HIV Rev Regulation of mRNA
The nuclear matrix protein, MATR3, is a newly-described Rev cofactor whose mechanism of action is only starting to be revealed
The evolution of sex-specific virulence in infectious diseases
Fatality rates of infectious diseases are often higher in men than women. Although this difference is often attributed to a stronger immune response in women, we show that differences in the transmission routes that the sexes provide can result in evolution favouring pathogens with sex-specific virulence. Because women can transmit pathogens during pregnancy, birth or breast-feeding, pathogens adapt, evolving lower virulence in women. This can resolve the long-standing puzzle on progression from Human T-cell Lymphotropic Virus Type 1 (HTLV-1) infection to lethal Adult T-cell Leukaemia (ATL); a progression that is more likely in Japanese men than women, while it is equally likely in Caribbean women and men. We argue that breastfeeding, being more prolonged in Japan than in the Caribbean, may have driven the difference in virulence between the two populations. Our finding signifies the importance of investigating the differences in genetic expression profile of pathogens in males and females
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
Tissue factor deficiency increases alveolar hemorrhage and death in influenza A virus-infected mice
Essentials H1N1 Influenza A virus (IAV) infection is a hemostatic challenge for the lung. Tissue factor (TF) on lung epithelial cells maintains lung hemostasis after IAV infection. Reduced TF-dependent activation of coagulation leads to alveolar hemorrhage. Anticoagulation might increase the risk for hemorrhages into the lung during severe IAV infection. Summary: Background Influenza A virus (IAV) infection is a common respiratory tract infection that causes considerable morbidity and mortality worldwide. Objective To investigate the effect of genetic deficiency of tissue factor (TF) in a mouse model of IAV infection. Methods Wild-type mice, low-TF (LTF) mice and mice with the TF gene deleted in different cell types were infected with a mouse-adapted A/Puerto Rico/8/34 H1N1 strain of IAV. TF expression was measured in the lungs, and bronchoalveolar lavage fluid (BALF) was collected to measure extracellular vesicle TF, activation of coagulation, alveolar hemorrhage, and inflammation. Results IAV infection of wild-type mice increased lung TF expression, activation of coagulation and inflammation in BALF, but also led to alveolar hemorrhage. LTF mice and mice with selective deficiency of TF in lung epithelial cells had low basal levels of TF and failed to increase TF expression after infection; these two strains of mice had more alveolar hemorrhage and death than controls. In contrast, deletion of TF in either myeloid cells or endothelial cells and hematopoietic cells did not increase alveolar hemorrhage or death after IAV infection. These results indicate that TF expression in the lung, particularly in epithelial cells, is required to maintain alveolar hemostasis after IAV infection. Conclusion Our study indicates that TF-dependent activation of coagulation is required to limit alveolar hemorrhage and death after IAV infection
- β¦