2,847 research outputs found

    Dynamical Casimir effect for magnons in a spinor Bose-Einstein condensate

    Full text link
    Magnon excitation in a spinor Bose-Einstein condensate by a driven magnetic field is shown to have a close analogy with the dynamical Casimir effect. A time-dependent external magnetic field amplifies quantum fluctuations in the magnetic ground state of the condensate, leading to magnetization of the system. The magnetization occurs in a direction perpendicular to the magnetic field breaking the rotation symmetry. This phenomenon is numerically demonstrated and the excited quantum field is shown to be squeezed.Comment: 8 pages, 3 figure

    Bloch Structures in a Rotating Bose-Einstein Condensate

    Full text link
    A rotating Bose-Einstein condensate is shown to exhibit a Bloch band structure without the need of periodic potential. Vortices enter the condensate by a mechanism similar to the Bragg reflection, if the frequency of a rotating drive or the strength of interaction is adiabatically changed. A localized state analogous to a gap soliton in a periodic system is predicted near the edge of the Brillouin zone.Comment: 4 pages, 3 figure

    Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    Full text link
    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean-field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.Comment: 5 pages, 4 figure

    In-plane deformation of a triangulated surface model with metric degrees of freedom

    Full text link
    Using the canonical Monte Carlo simulation technique, we study a Regge calculus model on triangulated spherical surfaces. The discrete model is statistical mechanically defined with the variables XX, gg and ρ\rho, which denote the surface position in R3{\bf R}^3, the metric on a two-dimensional surface MM and the surface density of MM, respectively. The metric gg is defined only by using the deficit angle of the triangles in {MM}. This is in sharp contrast to the conventional Regge calculus model, where {gg} depends only on the edge length of the triangles. We find that the discrete model in this paper undergoes a phase transition between the smooth spherical phase at btoinftyb to infty and the crumpled phase at bto0b to 0, where bb is the bending rigidity. The transition is of first-order and identified with the one observed in the conventional model without the variables gg and ρ\rho. This implies that the shape transformation transition is not influenced by the metric degrees of freedom. It is also found that the model undergoes a continuous transition of in-plane deformation. This continuous transition is reflected in almost discontinuous changes of the surface area of MM and that of X(M)X(M), where the surface area of MM is conjugate to the density variable ρ\rho.Comment: 13 pages, 7 figure

    Capillary instability in a two-component Bose-Einstein condensate

    Full text link
    Capillary instability and the resulting dynamics in an immiscible two-component Bose-Einstein condensate are investigated using the mean-field and Bogoliubov analyses. A long, cylindrical condensate surrounded by the other component is dynamically unstable against breakup into droplets due to the interfacial tension arising from the quantum pressure and interactions. A heteronuclear system confined in a cigar-shaped trap is proposed for realizing this phenomenon experimentally.Comment: 7 pages, 6 figure

    Novel Magnetic and Thermodynamic Properties of Thiospinel Compound CuCrZrS4_{4}

    Get PDF
    We have carried out dc magnetic susceptibility, magnetization and specific heat measurements on thiospinel CuCrZrS4_{4}. Below TC=T_{\rm C}^{*} = 58 K, dc magnetic susceptibility and magnetization data show ferromagnetic behavior with a small spontaneous magnetization 0.27 μB/\mu_{\rm B}/f. u.. In dc magnetic susceptibility, large and weak irreversibilities are observed below Tf=T_{\rm f} = 6 K and in the range Tf<T<TCT_{\rm f}< T < T_{\rm C}^{*} respectively. We found that there is no anomaly as a peak or step in the specific heat at TCT_{\rm C}^{*}.Comment: 11 pages, 4 figure
    corecore