9,995 research outputs found
Briefing: Auditor/company interactions in the 2007 UK regulatory environment
No abstract availabl
Experimental investigation of combustor effects on rocket thrust chamber performance
The results are reported of a program to develop special instrumentation systems and engine hardware, conduct tests using LOX/GH2 propellants wherein radial mixtures ratio stratification was controlled, and subsequently compare the results of four selected tests with the predictions of the JANNAF performance-prediction computer programs. During the experiments, the overall propellant mixture ratio was varied from 4.4 to 6.6, while the mixture ratios in the core and outer zone were varied from 5.7 to 8.8 and from 3.7 to 7.2, respectively. A nominal 10 percent of the total fuel flow was used as boundary layer collant in a majority of the firings. Nominal chamber pressure was either 225 or 250 psia, with nozzle expansion ratios of either 25:1 or 4:1. Measurements of the axial chamber pressure and wall heat flux profiles, together with samples of the exhaust gas, were obtained. The corrected experimental specific impulse and characteristic exhaust velocity efficiencies were approximately 97.5 and 98.5 percent, respectively
Advanced acoustic cavity technology
A series of rocket motor firings was performed in a modified linear aerospike thrust chamber with the H2/O2 propellant combination to allow determination of the physical properties of the combustion gases in acoustic cavities located in the chamber side walls. A preliminary analytical study was first conducted to define theoretically both the appropriate cavity dimensions and the combustion gas flow field adjacent to the cavity openings. During the subsequent motor firings, cavity gas temperature profiles were measured and gas samples were withdrawn from the bottom of the cavities for compositional analysis by measurement of pressure/temperature variation and gas chromatography. Data were obtained with both radially and axially oriented cavities and with and without hydrogen bleed flow through the cavities. A simplified procedure was developed for predicting gas cavity and acoustic velocity for use in acoustic cavity design analyses
High performance N2O4/amine elements: Data dump covering. Task 1: Literature review
The phenomenon of reactive stream separation (RSS) in the N2O4/amine earth-storable propellant combinations is reviewed. Early theoretical models of RSS are presented, as are experimental combustion data under simulated rocket conditions. N2O4/amine combustion chemistry data is also provided. More recent work in the development of a comprehensive model is described
An Extraordinary Scattered Broad Emission Line in a Type 2 QSO
An infrared-selected, narrow-line QSO has been found to exhibit an
extraordinarily broad Halpha emission line in polarized light. Both the extreme
width (35,000 km/sec full-width at zero intensity) and 3,000 km/sec redshift of
the line centroid with respect to the systemic velocity suggest emission in a
deep gravitational potential. An extremely red polarized continuum and partial
scattering of the narrow lines at a position angle common to the broad-line
emission imply extensive obscuration, with few unimpeded lines of sight to the
nucleus.Comment: 4 pages, 1 figure, to appear in the Astrophysical Journal Letter
An effective genetic algorithm for network coding
The network coding problem (NCP), which aims to minimize network coding resources such as nodes and links, is a relatively new application of genetic algorithms (GAs) and hence little work has so far been reported in this area. Most of the existing literature on NCP has concentrated primarily on the static network coding problem (SNCP). There is a common assumption in work to date that a target rate is always achievable at every sink as long as coding is allowed at all nodes. In most real-world networks, such as wireless networks, any link could be disconnected at any time. This implies that every time a change occurs in the network topology, a new target rate must be determined. The SNCP software implementation then has to be re-run to try to optimize the coding based on the new target rate. In contrast, the GA proposed in this paper is designed with the dynamic network coding problem (DNCP) as the major concern. To this end, a more general formulation of the NCP is described. The new NCP model considers not only the minimization of network coding resources but also the maximization of the rate actually achieved at sinks. This is particularly important to the DNCP, where the target rate may become unachievable due to network topology changes. Based on the new NCP model, an effective GA is designed by integrating selected new problem-specific heuristic rules into the evolutionary process in order to better diversify chromosomes. In dynamic environments, the new GA does not need to recalculate target rate and also exhibits some degree of robustness against network topology changes. Comparative experiments on both SNCP and DNCP illustrate the effectiveness of our new model and algorithm
Young stars and dust in AFGL437: NICMOS/HST polarimetric imaging of an outflow source
We present near infrared broad band and polarimetric images of the compact
star forming cluster AFGL437 obtained with the NICMOS instrument aboard HST.
Our high resolution images reveal a well collimated bipolar reflection
nebulosity in the cluster and allow us to identify WK34 as the illuminating
source. The scattered light in the bipolar nebulosity centered on this source
is very highly polarized (up to 79%). Such high levels of polarization implies
a distribution of dust grains lacking large grains, contrary to the usual dust
models of dark clouds. We discuss the geometry of the dust distribution giving
rise to the bipolar reflection nebulosity and make mass estimates for the
underlying scattering material. We find that the most likely inclination of the
bipolar nebulosity, south lobe inclined towards Earth, is consistent with the
inclination of the large scale CO molecular outflow associated with the
cluster, strengthening the identification of WK34 as the source powering it.Comment: 26 pages, 10 figues. Accepted for publication in the Astrophysical
Journa
The Optical Polarization of Near-Infrared Selected QSOs
Optical broad-band polarimetry is presented for near-infrared color-selected
AGN classified QSOs based on their K-band luminosity. More than 10% of a sample
of 70 QSOs discovered in the Two Micron All Sky Survey (2MASS) with J-K > 2 and
M_K 3%), and values range
to a maximum of P = 11%. High polarization tends to be associated with the most
luminous objects at K, and with QSOs having the highest near-IR-to-optical flux
ratios. The 2MASS QSO sample includes objects possessing a wide range of
optical spectral types. High polarization is seen in two of 22 broad
emission-line (Type 1) objects, but 1/4 of the QSOs of intermediate spectral
type (Type 1.5-1.9) are highly polarized. None of the nine QSOs classified as
Type 2 exhibit P > 3%. It is likely that the unavoidable inclusion of
unpolarized starlight from the host galaxy within the observation aperture
results in reduced polarization for the narrow emission-line objects. The high
polarization of 2MASS-discovered QSOs supports the conclusion inferred from
their near-IR and optical colors, that the nuclei of many of these objects are
obscured to some degree by dust. The 2MASS QSO sample is compared to other,
predominantly radio-quiet, QSOs and is found to be consistent with the idea
that the orientation of AGN to the line of sight plays a major role in
determining their observed properties.Comment: To appear in The Astrophysical Journal. 19 pages, 6 tables, 7 figure
- …
