86 research outputs found

    Electron-phonon renormalization in small Fermi energy systems

    Full text link
    The puzzling features of recent photoemission data in cuprates have been object of several analysis in order to identity the nature of the underlying electron-boson interaction. In this paper we point out that many basilar assumptions of the conventional analysis as expected to fail in small Fermi energy systems when, as the cuprates, the Fermi energy EFE_{\rm F} is comparable with the boson energy scale. We discuss in details the novel features appearing in the self-energy of small Fermi energy systems and the possible implications on the ARPES data in cuprates.Comment: 4 pages, 5 eps figures include

    Delayed electron emission in strong-field driven tun-nelling from a metallic nanotip in the multi-electronregime

    Get PDF
    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources.111410Ysciescopu

    Ferrule-top nanoindenter: An optomechanical fiber sensor for nanoindentation

    Get PDF
    Ferrule-top probes are self-aligned all-optical devices obtained by fabricating a cantilever on the top of a ferruled optical fiber. This approach has been proven to provide a new platform for the realization of small footprint atomic force microscopes (AFMs) that adapt well to utilization outside specialized laboratories [D. Chavan, Rev. Sci. Instrum. 81, 123702 (2010)10.1063/1.3516044; D. Chavan, Rev. Sci. Instrum. 82, 046107 (2011)10.1063/1.3579496]. In this paper we now show that ferrule-top cantilevers can be also used to develop nanoindenters. Our instrument combines the sensitivity of commercial AFM-based indentation with the ease-of-use of more macroscopic instrumented indenters available today on the market. Furthermore, the all-optical design allows smooth operations also in liquids, where other devices are much more limited and often provide data that are difficult to interpret. This study may pave the way to the implementation of a new generation user-friendly nanoindenters for the measurement of the stiffness of samples in material sciences and medical research. © 2012 American Institute of Physics

    Surface states and their possible role in the superconductivity of MgB2

    Full text link
    We report layer-Korringa-Kohn-Rostocker calculations for bulk and surface states as well as the corresponding angle resolved photoemission (ARPES) intensities of MgB2. Our theoretical results reproduce very well the recent ARPES data by Uchiyama et al., cond-mat/0111152. At least two surface states are assigned. Consequences of SFS on the anisotropy of the upper critical fields and other properties in the superconducting state of small grains in micropowder samples are briefly discussed.Comment: 4pages, 6figures, corrected typos, references adde

    A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator

    Get PDF
    When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the extreme quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic field. Bulk Bi1x_{1-x}Sbx_x single crystals are expected to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher dimensional analogues of the edge states that characterize a spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi1x_{1-x}Sbx_x is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report the first direct observation of massive Dirac particles in the bulk of Bi0.9_{0.9}Sb0.1_{0.1}, locate the Kramers' points at the sample's boundary and provide a comprehensive mapping of the topological Dirac insulator's gapless surface modes. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the much sought exotic "topological metal". They also suggest that this material has potential application in developing next-generation quantum computing devices.Comment: 16 pages, 3 Figures. Submitted to NATURE on 25th November(2007

    Evidence for an energy scale for quasiparticle dispersion in Bi_2Sr_2CaCu_2O_8

    Full text link
    Quasiparticle dispersion in Bi2Sr2CaCu2O8Bi_{2}Sr_{2}CaCu_{2}O_{8} is investigated with improved angular resolution as a function of temperature and doping. Unlike the linear dispersion predicted by the band calculation, the data show a sharp break in dispersion at 50±1050\pm10 meVmeV binding energy where the velocity changes by a factor of two or more. This change provides an energy scale in the quasiparticle self-energy. This break in dispersion is evident at and away from the d-wave node line, but the magnitude of the dispersion change decreases with temperature and with increasing doping.Comment: 4 figure

    An angle-resolved photoemission spectral function analysis of the electron doped cuprate Nd_1.85Ce_0.15CuO_4

    Full text link
    Using methods made possible by recent advances in photoemission technology, we perform an indepth line-shape analysis of the angle-resolved photoemission spectra of the electron doped (n-type) cuprate superconductor Nd_1.85Ce_0.15CuO_4. Unlike for the p-type materials, we only observe weak mass renormalizations near 50-70 meV. This may be indicative of smaller electron-phonon coupling or due to the masking effects of other interactions that make the electron-phonon coupling harder to detect. This latter scenario may suggest limitations of the spectral function analysis in extracting electronic self-energies when some of the interactions are highly momentum dependent.Comment: 8 pages, 5 figure

    A Spin-Resolved Photoemission Study of Photohole Lifetimes in Ferromagnetic Gadolinium

    Full text link
    High resolution spin-resolved photoemission is used to probe the properties of a Gd(0001) surface state. The state shows both a spin-mixing behavior reflecting the exchange of magnons with the local moments and a reduction of the exchange splitting with increasing temperature. The surface state polarization at low T suggests that the surface layer has an enhanced Tc of 365K or greater. Measurements of the photoemission linewidths show that at low temperatures, the lifetime of a majority spin photohole is predominantly limited by electron-phonon scattering and that of a minority spin photohole by electron-magnon scattering. Since similar behavior may be expected for bulk states close to the Fermi level, the transport properties of this material will also be determined by different decay mechanisms in the two channels

    Combination of Nanoindentation and Quantitative Backscattered Electron Imaging Revealed Altered Bone Material Properties Associated with Femoral Neck Fragility

    Get PDF
    Osteoporotic fragility fractures were hypothesized to be related to changes in bone material properties and not solely to reduction in bone mass. We studied cortical bone from the superior and inferior sectors of whole femoral neck sections from five female osteoporotic hip fracture cases (74–92 years) and five nonfractured controls (75–88 years). The typical calcium content (CaPeak) and the mineral particle thickness parameter (T) were mapped in large areas of the superior and inferior regions using quantitative backscattered electron imaging (qBEI) and scanning small-angle X-ray scattering, respectively. Additionally, indentation modulus (E) and hardness (H) (determined by nanoindentation) were compared at the local level to the mineral content (CaInd) at the indent positions (obtained from qBEI). CaPeak (−2.2%, P = 0.002), CaInd (−1.8%, P = 0.048), E (−5.6%, P = 0.040), and H (−6.0%, P = 0.016) were significantly lower for the superior compared to the inferior region. Interestingly, CaPeak as well as CaInd were also lower (−2.6%, P = 0.006, and –3.7%, P = 0.002, respectively) in fracture cases compared to controls, while E and H did not show any significant reduction. T values were in the normal range, independent of region (P = 0.181) or fracture status (P = 0.551). In conclusion, it appears that the observed femoral neck fragility is associated with a reduced mineral content, which was not accompanied by a reduction in stiffness and hardness of the bone material. This pilot study suggests that a stiffening process in the organic matrix component contributes to bone fragility independently of mineral content

    Microarchitecture and Nanomechanical Properties of Trabecular Bone After Strontium Administration in Osteoporotic Goats

    Get PDF
    Strontium (Sr) ralenate is a new agent used for the prevention and treatment of osteoporosis. As a bone-seeking element, 98% of Sr is deposited in the bone and teeth after oral ingestion. However, the effect of Sr treatment on bone microarchitecture and bone nanomechanical properties remains unclear. In this study, 18 osteoporotic goats were divided into four groups according to the treatment regimen: control, calcium alone (Ca), calcium and Sr at 24 mg/kg (Ca + 24Sr), and calcium and Sr at 40 mg/kg (Ca + 40Sr). The effects of Sr administration on bone microarchitecture and nanomechanical properties of trabecular bones were analyzed with micro-CT and nanoindentation test, respectively. Serum Sr levels increased six- and tenfold in the Ca + 24Sr and Ca + 40Sr groups, respectively. Similarly, Sr in the bone increased four- and sixfold in these two groups. Sr administration significantly increased trabecular bone volume fraction, trabecular thickness, and double-labeled new bone area. Sr administration, however, did not significantly change the nanomechanical properties of trabecular bone (elastic modulus and hardness). The data suggested that Sr administration increased trabecular bone volume and improved the microarchitecture while maintaining the intrinsic tissue properties in the osteoporotic goat model
    corecore