171 research outputs found

    Serum neurofilament light chains in progressive multiple sclerosis patients treated with repeated cycles of high-dose intravenous steroids

    Get PDF
    Background and objectives: In progressive multiple sclerosis (MS) patients, CNS inflammation trapped behind a closed blood brain barrier drives continuous neuroaxonal degeneration, thus leading to deterioration of neurological function. Therapeutics in progressive MS are limited. High-dose intravenous glucocorticosteroids (HDCS) can cross the blood-brain barrier and may reduce inflammation within the CNS. However, the treatment efficacy of HDCS in progressive MS remains controversial. Serum neurofilament light chains (sNfL) are an established biomarker of neuroaxonal degeneration and are used to monitor treatment responses. We aimed to investigate whether repeated cycles of intravenous HDCS reduce the level of sNfL in progressive MS patients. Methods: We performed a monocentric observational study of 25 patients recruited during ongoing clinical routine care who were treated with repeated cycles of intravenous HDCS as long-term therapy for their progressive MS. sNfL were measured in 103 repeated blood samples (median time interval from baseline 28 weeks, range 2-55 weeks) with the Single Molecular Array (SiMoA) technology. The Expanded Disability Status Score (EDSS) was documented at baseline and follow-up. Results: The median age of patients was 55 years (range 46-77 years) with a median disease duration of 26 years (range 11-42 years). sNfL baseline levels at study inclusion were significantly higher in progressive MS patients compared to age-matched healthy controls (median 16.7 pg/ml vs 11.5 pg/ml, p=0.002). sNfL levels showed a positive correlation with patient age (r=0.2, p=0.003). The majority of patients (72%, 16/23) showed reduced sNfL levels ≥20 weeks after HDCS compared to baseline (median 13.3 pg/ml, p=0.03). sNfL levels correlated negatively with the time interval from baseline HDCS therapy (r=-0.2, p=0.03). This association was also evident after correction for treatment with disease-modifying drugs (adjusted R2=0.10, p=0.001). The EDSS remained stable (median 6.5) within a median treatment duration of 26 weeks (range 13-51 weeks). Conclusion: Although larger studies are needed to confirm our findings, we were able to demonstrate that HDCS treatment reduces sNfL levels and therefore may slow down neuroaxonal damage in a subgroup of patients with progressive MS. Moreover, a stable EDSS was observed during therapy. Findings suggest that HDCS may be beneficial for the treatment of progressive MS

    Active Membrane Fluctuations Studied by Micropipet Aspiration

    Get PDF
    We present a detailed analysis of the micropipet experiments recently reported in J-B. Manneville et al., Phys. Rev. Lett. 82, 4356--4359 (1999), including a derivation of the expected behaviour of the membrane tension as a function of the areal strain in the case of an active membrane, i.e., containing a nonequilibrium noise source. We give a general expression, which takes into account the effect of active centers both directly on the membrane, and on the embedding fluid dynamics, keeping track of the coupling between the density of active centers and the membrane curvature. The data of the micropipet experiments are well reproduced by the new expressions. In particular, we show that a natural choice of the parameters quantifying the strength of the active noise explains both the large amplitude of the observed effects and its remarkable insensitivity to the active-center density in the investigated range. [Submitted to Phys Rev E, 22 March 2001]Comment: 14 pages, 5 encapsulated Postscript figure

    Systems analysis of bioenergetics and growth of the extreme halophile Halobacterium salinarum

    Get PDF
    Halobacterium salinarum is a bioenergetically flexible, halophilic microorganism that can generate energy by respiration, photosynthesis, and the fermentation of arginine. In a previous study, using a genome-scale metabolic model, we have shown that the archaeon unexpectedly degrades essential amino acids under aerobic conditions, a behavior that can lead to the termination of growth earlier than necessary. Here, we further integratively investigate energy generation, nutrient utilization, and biomass production using an extended methodology that accounts for dynamically changing transport patterns, including those that arise from interactions among the supplied metabolites. Moreover, we widen the scope of our analysis to include phototrophic conditions to explore the interplay between different bioenergetic modes. Surprisingly, we found that cells also degrade essential amino acids even during phototropy, when energy should already be abundant. We also found that under both conditions considerable amounts of nutrients that were taken up were neither incorporated into the biomass nor used as respiratory substrates, implying the considerable production and accumulation of several metabolites in the medium. Some of these are likely the products of forms of overflow metabolism. In addition, our results also show that arginine fermentation, contrary to what is typically assumed, occurs simultaneously with respiration and photosynthesis and can contribute energy in levels that are comparable to the primary bioenergetic modes, if not more. These findings portray a picture that the organism takes an approach toward growth that favors the here and now, even at the cost of longer-term concerns. We believe that the seemingly "greedy" behavior exhibited actually consists of adaptations by the organism to its natural environments, where nutrients are not only irregularly available but may altogether be absent for extended periods that may span several years. Such a setting probably predisposed the cells to grow as much as possible when the conditions become favorable

    An extended association screen in multiple sclerosis using 202 microsatellite markers targeting apoptosis-related genes does not reveal new predisposing factors

    Get PDF
    Apoptosis, the programmed death of cells, plays a distinct role in the etiopathogenesis of Multiple sclerosis (MS), a common disease of the central nervous system with complex genetic background. Yet, it is not clear whether the impact of apoptosis is due to altered apoptotic behaviour caused by variations of apoptosis-related genes. Instead, apoptosis in MS may also represent a secondary response to cellular stress during acute inflammation in the central nervous system. Here, we screened 202 apoptosis-related genes for association by genotyping 202 microsatellite markers in initially 160 MS patients and 160 controls, both divided in 4 sets of pooled DNA samples, respectively. When applying Bonferroni correction, no significant differences in allele frequencies were detected between MS patients and controls. Nevertheless, we chose 7 markers for retyping in individual DNA samples, thereby eliminating 6 markers from the list of candidates. The remaining candidate, the ERBB3 gene microsatellite, was genotyped in additional 245 MS patients and controls. No association of the ERBB3 marker with the disease was detected in these additional cohorts. In consequence, we did not find further evidence for apoptosis-related genes as predisposition factors in MS

    Protein Conformational Changes in the Bacteriorhodopsin Photocycle: Comparison of Findings from Electron and X-Ray Crystallographic Analyses

    Get PDF
    Light-driven conformational changes in the membrane protein bacteriorhodopsin have been studied extensively using X-ray and electron crystallography, resulting in the deposition of >30 sets of coordinates describing structural changes at various stages of proton transport. Using projection difference Fourier maps, we show that coordinates reported by different groups for the same photocycle intermediates vary considerably in the extent and nature of conformational changes. The different structures reported for the same intermediate cannot be reconciled in terms of differing extents of change on a single conformational trajectory. New measurements of image phases obtained by cryo-electron microscopy of the D96G/F171C/F219L triple mutant provide independent validation for the description of the large protein conformational change derived at 3.2 Å resolution by electron crystallography of 2D crystals, but do not support atomic models for light-driven conformational changes derived using X-ray crystallography of 3D crystals. Our findings suggest that independent determination of phase information from 2D crystals can be an important tool for testing the accuracy of atomic models for membrane protein conformational changes

    Cost-Effectiveness of Genotypic Antiretroviral Resistance Testing in HIV-Infected Patients with Treatment Failure

    Get PDF
    BACKGROUND: Genotypic antiretroviral resistance testing (GRT) in HIV infection with drug resistant virus is recommended to optimize antiretroviral therapy, in particular in patients with virological failure. We estimated the clinical effect, cost and cost-effectiveness of using GRT as compared to expert opinion in patients with antiretroviral treatment failure. METHODS: We developed a mathematical model of HIV disease to describe disease progression in HIV-infected patients with treatment failure and compared the incremental impact of GRT versus expert opinion to guide antiretroviral therapy. The analysis was conducted from the health care (discount rate 4%) and societal (discount rate 2%) perspective. Outcome measures included life-expectancy, quality-adjusted life-expectancy, health care costs, productivity costs and cost-effectiveness in US Dollars per quality-adjusted life-year (QALY) gained. Clinical and economic data were extracted from the large Swiss HIV Cohort Study and clinical trials. RESULTS: Patients whose treatment was optimized with GRT versus expert opinion had an increase in discounted life-expectancy and quality-adjusted life-expectancy of three and two weeks, respectively. Health care costs with and without GRT were US421,000andUS 421,000 and US 419,000, leading to an incremental cost-effectiveness ratio of US35,000perQALYgained.Intheanalysisfromthesocietalperspective,GRTversusexpertopinionledtoanincreaseindiscountedlifeexpectancyandqualityadjustedlifeexpectancyofthreeandfourweeks,respectively.HealthcarecostswithandwithoutGRTwereUS 35,000 per QALY gained. In the analysis from the societal perspective, GRT versus expert opinion led to an increase in discounted life-expectancy and quality-adjusted life-expectancy of three and four weeks, respectively. Health care costs with and without GRT were US 551,000 and $US 549,000, respectively. When productivity changes were included in the analysis, GRT was cost-saving. CONCLUSIONS: GRT for treatment optimization in HIV-infected patients with treatment failure is a cost-effective use of scarce health care resources and beneficial to the society at large

    Intracellular protein determination using droplet-based immunoassays

    Get PDF
    This paper describes the implementation of a sensitive, on-chip immunoassay for the analysis of intracellular proteins, developed using microdroplet technology. The system offers a number of analytical functionalities, enabling the lysis of low cell numbers, as well as protein detection and quantification, integrated within a single process flow. Cells were introduced into the device in suspension and were electrically lysed in situ. The cell lysate was subsequently encapsulated together with antibody-functionalized beads into stable, water-in-oil droplets, which were stored on-chip. The binding of intracellular proteins to the beads was monitored fluorescently. By analyzing many individual droplets and quantifying the data obtained against standard additions, we measured the level of two intracellular proteins, namely, HRas-mCitrine, expressed within HEK-293 cells, and actin-EGFP, expressed within MCF-7 cells. We determined the concentrations of these proteins over 5 orders of magnitude, from 50 pM to 1 μM. The results from this semiautomated method were compared to those for determinations made using Western blots, and were found not only to be faster, but required a smaller number of cells
    corecore