20 research outputs found

    Impacts of Traffic Reductions Associated With COVID-19 on Southern California Air Quality

    Get PDF
    On 19 March 2020, California put in place Stay‐At‐Home orders to reduce the spread of SARS‐CoV‐2. As a result, decreases up to 50% in traffic occurred across the South Coast Air Basin (SoCAB). We report that, compared to the 19 March to 30 June period of the last 5 years, the 2020 concentrations of PM_(2.5) and NO_x showed an overall reduction across the basin. O₃ concentrations decreased in the western part of the basin and generally increased in the downwind areas. The NO_x decline in 2020 (approximately 27% basin‐wide) is in addition to ongoing declines over the last two decades (on average 4% less than the −6.8% per year afternoon NO₂ concentration decrease) and provides insight into how air quality may respond over the next few years of continued vehicular reductions. The modest changes in O₃ suggests additional mitigation will be necessary to comply with air quality standards

    Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF)

    No full text
    In this study, the positive matrix factorization (PMF) receptor model (version 5.0) was used to identify and quantify major sources contributing to particulate matter (PM) number concentrations, using PM number size distributions in the range of 13 nm to 10 µm combined with several auxiliary variables, including black carbon (BC), elemental and organic carbon (EC/OC), PM mass concentrations, gaseous pollutants, meteorological, and traffic counts data, collected for about 9 months between August 2014 and 2015 in central Los Angeles, CA. Several parameters, including particle number and volume size distribution profiles, profiles of auxiliary variables, contributions of different factors in different seasons to the total number concentrations, diurnal variations of each of the resolved factors in the cold and warm phases, weekday/weekend analysis for each of the resolved factors, and correlation between auxiliary variables and the relative contribution of each of the resolved factors, were used to identify PM sources. A six-factor solution was identified as the optimum for the aforementioned input data. The resolved factors comprised nucleation, traffic 1, traffic 2 (with a larger mode diameter than traffic 1 factor), urban background aerosol, secondary aerosol, and soil/road dust. Traffic sources (1 and 2) were the major contributor to PM number concentrations, collectively making up to above 60 % (60.8–68.4 %) of the total number concentrations during the study period. Their contribution was also significantly higher in the cold phase compared to the warm phase. Nucleation was another major factor significantly contributing to the total number concentrations (an overall contribution of 17 %, ranging from 11.7 to 24 %), with a larger contribution during the warm phase than in the cold phase. The other identified factors were urban background aerosol, secondary aerosol, and soil/road dust, with relative contributions of approximately 12 % (7.4–17.1), 2.1 % (1.5–2.5 %), and 1.1 % (0.2–6.3 %), respectively, overall accounting for about 15 % (15.2–19.8 %) of PM number concentrations. As expected, PM number concentrations were dominated by factors with smaller mode diameters, such as traffic and nucleation. On the other hand, PM volume and mass concentrations in the study area were mostly affected by sources with larger mode diameters, including secondary aerosols and soil/road dust. Results from the present study can be used as input parameters in future epidemiological studies to link PM sources to adverse health effects as well as by policymakers to set targeted and more protective emission standards for PM

    Spatial and temporal variability of sources of ambient fine particular matter (PM<sub>2.5</sub>) in California

    Full text link
    International audienceCE 27 oct. 2011, Association Analyser, n° 341278, au Lebon ; AJDA 2011. 209

    Spatial and temporal variability of sources of ambient fine particulate matter (PM<sub>2.5</sub>) in California

    No full text
    To identify major sources of ambient fine particulate matter (PM2.5, dp < 2.5 &mu;m) and quantify their contributions in the state of California, a positive matrix factorization (PMF) receptor model was applied on Speciation Trends Network (STN) data, collected between 2002 and 2007 at eight distinct sampling locations, including El Cajon, Rubidoux, Los Angeles, Simi Valley, Bakersfield, Fresno, San Jose, and Sacramento. Between five to nine sources of fine PM were identified at each sampling site, several of which were common among multiple locations. Secondary aerosols, including secondary ammonium nitrate and ammonium sulfate, were the most abundant contributor to ambient PM2.5 mass at all sampling sites, except for San Jose, with an annual average cumulative contribution of 26 to 63%, across the state. On an annual average basis, vehicular emissions (including both diesel and gasoline vehicles) were the largest primary source of fine PM at all sampling sites in southern California (17–18% of total mass), whereas in Fresno and San Jose, biomass burning was the most dominant primary contributor to ambient PM2.5 (27 and 35% of total mass, respectively), in general agreement with the results of previous source apportionment studies in California. In Bakersfield and Sacramento, vehicular emissions and biomass burning displayed relatively equal annual contributions to ambient PM2.5 mass (12 and 25%, respectively). Other commonly identified sources at all sites included aged and fresh sea salt and soil, which contributed to 0.5–13%, 2–27%, and 1–19% of the total mass, respectively, across all sites and seasons. In addition, a few minor sources were identified exclusively at some of the sites (e.g., chlorine sources, sulfate-bearing road dust, and different types of industrial emissions). These sources overall accounted for a small fraction of the total PM mass across the sampling locations (1 to 15%, on an annual average basis)
    corecore