5 research outputs found

    Why Soot is not Alike Soot: A Molecular/Nanostructural Approach to Low Temperature Soot Oxidation

    Get PDF
    Due to worldwide increasingly sharpened emission regulations, the development of Gasoline Direct Injection and Diesel Direct Injection engines not only aims at the reduction of the emission of nitrogen oxides but also at the reduction of particulate emissions. Regarding present regulations, both tasks can be achieved solely with the help of exhaust after treatment systems. For the reduction of the emission of particulates, Gasoline (GPF) and diesel Particulate Filters (DPF) offer a solution and their implementation is intensely promoted. Under optimal conditions particulates retained on particulate filters are continuously oxidized with the exhaust residual oxygen so that the particulate filter (PF) is regenerated possibly without any additional intervention into the engine operating parameters. The regeneration behavior of PF depends on the reaction rates of soot particles with oxidative reactants at exhaust gas temperatures. The reaction rates of soot particles from internal combustion engines (ICE) often are discussed in terms of order/disorder on the particle nanoscale, the concentration and kind of functional groups on the particle surfaces, and the content of (mostly polycyclic aromatic) hydrocarbons in the soot. In this work the reactivity of different kinds of soot (soot from flames, soot from ICE, carbon black) under oxidation conditions representative for PF regeneration is investigated. Soot reactivity is determined in dynamic Temperature Programmed Oxidation (TPO) experiments and the soot primary particle morphology and nanostructure is investigated by High-Resolution Transmission Electron Microscopy (HRTEM). An image analysis method based on known methods from the literature and improving some infirmities is used to evaluate morphology and nanostructural characteristics. From this, primary particle size distributions, length and separation distance distributions as well as tortuosities of fringes within the primary particle structures are obtained. Further, UV–visible spectroscopy and Raman scattering and other diagnostic techniques are used to study the properties connected to the reactivity of soot and to corroborate the experimental findings. It is found that nanostructural characteristics predominantly affect reactivity. Oxidation rates are derived from TPO and interpreted on a molecular basis from quantum chemistry calculations revealing a replication/activation oxidation mechanism

    Hardware-assisted transaction processing : NVM

    No full text
    A transaction is a demarcated sequence of application operations, for which the following properties are guaranteed by the underlying transaction processing system (TPS): atomicity, consistency, isolation, and durability (ACID). Transactions are therefore a general abstraction, provided by TPS that simplifies application development by relieving transactional applications from the burden of concurrency and failure handling. Apart from the ACID properties, a TPS must guarantee high and robust performance (high transactional throughput and low response times), high reliability (no data loss, ability to recover last consistent state, fault tolerance), and high availability (infrequent outages, short recovery times). The architectures and workhorse algorithms of a high-performance TPS are built around the properties of the underlying hardware. The introduction of nonvolatile memories (NVM) as novel storage technology opens an entire new problem space, with the need to revise aspects such as the virtual memory hierarchy, storage management and data placement, access paths, and indexing. NVM are also referred to as storage-class memory (SCM)
    corecore