130 research outputs found

    Gold dimer in neon: an absorption and fluorescence study

    Get PDF
    We report for the first time the absorption and fluorescence spectra of gold dimers in a neon matrix. The dimer absorption spectra show the A ← X transition predicted from measurements in the gas phase and not observed so far in a matrix, as well as the so-called B ← X and C ← X transitions. Fluorescence measurements on the atom reveal new emission lines at 1.97, 3.59 and 4.09eV that can be assigned to the 2P1/2 → 2D3/2, 2P1/2 → 2D5/2 and the 2P3/2 → 2D5/2 transitions. For the dimer, excitation of both A and B state results in distinct emission spectra with vibrational structur

    Spectroscopy of PTCDA attached to rare gas samples: clusters vs. bulk matrices. I. Absorption spectroscopy

    Get PDF
    The interaction between PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) and rare gas or para-hydrogen samples is studied by means of laser-induced fluorescence excitation spectroscopy. The comparison between spectra of PTCDA embedded in a neon matrix and spectra attached to large neon clusters shows that these large organic molecules reside on the surface of the clusters when doped by the pick-up technique. PTCDA molecules can adopt different conformations when attached to argon, neon and para-hydrogen clusters which implies that the surface of such clusters has a well-defined structure and has not liquid or fluxional properties. Moreover, a precise analysis of the doping process of these clusters reveals that the mobility of large molecules on the cluster surface is quenched, preventing agglomeration and complex formation

    Morphology and stability of Au nanoclusters in HOPG nanopits of well-defined depth

    Get PDF
    Gold nanoparticles with a diameter comprised between 4 and 6 nm are stabilized in nanosized pits of well defined depth in highly oriented pyrolytic graphite (HOPG). These pits are produced by creation of artificial defects, followed by etching under a controlled oxygen atmosphere. At low Au coverage, clusters are found on the edges of the hexagonal pits maximizing the contact to dangling bonds on graphite multisteps. Larger coverage results in Au beads of surprisingly well defined shape and with a constant bead density per unit length. Most remarkable is the stability of these nanostructures under ambient conditions. Temperatures as high as 650K do not alter the morphology of the gold clusters. Higher temperatures do not lead to a change of the cluster morphology but to catalytically driven etching of the HOPG substrat

    An experimental setup combining a highly sensitive detector forreaction products with a mass-selected cluster source andalow-temperature STM for advanced nanocatalysis measurements

    Get PDF
    We report on a home-built detector for catalytic reaction measurements offering good gas isolation from the surrounding ultrahigh vacuum components, high sensitivity for reaction products and a fast response time of 10ms enabling dynamic studies correlated to reactant gas pulses. The device is mounted in ultrahigh vacuum and combined with a low-temperature scanning tunneling microscope and a source for the deposition of mass-selected clusters. This combination allows for a direct correlation between surface morphology and catalytic properties of model catalysts. The performances of the new detector are illustrated by measurements on two model systems. Thermal desorption spectroscopy of CO carried out on morphologically well characterized Pt on TiO2(110)-(1×1) reveals several desorption features, which can be attributed to different surface sites. Catalytic CO oxidation performed by alternatingly pulsing isotopic CO and O2 on a Pt film on yttria stabilized zirconia reveals the CO or O rich temperature regimes. The CO2 production rate correlated with either one of the reactants can perfectly be reproduced by a kinetic reaction model giving access to the respective adsorption energie

    Morphology and stability of Au nanoclusters in HOPG nanopits of well-defined depth

    Get PDF
    Gold nanoparticles with a diameter comprised between 4 and 6 nm are stabilized in nanosized pits of well defined depth in highly oriented pyrolytic graphite (HOPG). These pits are produced by creation of artificial defects, followed by etching under a controlled oxygen atmosphere. At low Au coverage, clusters are found on the edges of the hexagonal pits maximizing the contact to dangling bonds on graphite multisteps. Larger coverage results in Au beads of surprisingly well defined shape and with a constant bead density per unit length. Most remarkable is the stability of these nanostructures under ambient conditions. Temperatures as high as 650 K do not alter the morphology of the gold clusters. Higher temperatures do not lead to a change of the cluster morphology but to catalytically driven etching of the HOPG substrate

    Optical absorption of small copper clusters in neon: Cu-n, (n=1-9)

    Get PDF
    We present optical absorption spectra in the UV-visible range (1.6 eV omega < 5.5 eV) of mass selected neutral copper clusters Cu-n(n = 1-9) embedded in a solid neon matrix at 7 K. The atom and the dimer have already been measured in neon matrices, while the absorption spectra for sizes between Cu-3 and Cu-9 are entirely (n = 6-9) or in great part new. They show a higher complexity and a larger number of transitions distributed over the whole energy range compared to similar sizes of silver clusters. The experimental spectra are compared to the time dependent density functional theory (TD-DFT) implemented in the TURBOMOLE package. The analysis indicates that for energies larger than 3 eV the transitions are mainly issued from d-type states; however, the TD-DFT scheme does not reproduce well the detailed structure of the absorption spectra. Below 3 eV the agreement for transitions issued from s-type states is better. (C) 2011 American Institute of Physics. [doi:10.1063/1.3552077

    UV-visible absorption of small gold clusters in neon: Au-n (n=1-5 and 7-9)

    Get PDF
    We present optical absorption spectra in the UV-visible range (1.5 eV < E < 6 eV) for mass selected neutral gold clusters Au-n (n = 1-5 and 7-9) embedded in solid Ne at 7 K. The experimental spectra are compared with time-dependent density functional calculations. Electronic transitions are distributed over the whole energy range without any concentration of the oscillator strength in a small energy window, characteristic for the more s-like metals such as the alkalis or silver. Contrary to the case of silver and partly copper clusters, transitions issued from mainly d-type states are significantly involved in low energy transitions. The measured integrated cross section is smaller (<20%) than expected from a free-electron system, manifesting the strong screening of the s electrons due to the proximity of the s and d levels in gold. (C) 2011 American Institute of Physics. [doi:10.1063/1.3537739

    Ultraviolet-visible absorption of small silver clusters in neon: Ag-n (n=1-9)

    Get PDF
    We present optical absorption and fluorescence spectra in the UV-visible range of size selected neutral Ag-n clusters (n = 1-9) in solid neon. Rich and detailed optical spectra are found with linewidths as small as 50 meV. These spectra are compared to time dependent density functional theory implemented in the TURBOMOLE package. Excellent agreement between theory and experiment is achieved in particular for the dominant spectroscopic features at photon energies below 4.5 eV. This allows a clear attribution of the observed electronic transitions to specific isomers. Optical transitions associated to the s-electrons are concentrated in the energy range between 3 and 4 eV and well separated from transitions of the d-electrons. This is in contrast to the other coinage metals (Au and Cu) which show a strong coupling of the d-electrons. (C) 2011 American Institute of Physics. [doi:10.1063/1.3589357

    An experimental setup combining a highly sensitive detector for reaction products with a mass-selected cluster source and a low-temperature STM for advanced nanocatalysis measurements

    Get PDF
    We report on a home-built detector for catalytic reaction measurements offering good gas isolation from the surrounding ultrahigh vacuum components, high sensitivity for reaction products and a fast response time of 10 ms enabling dynamic studies correlated to reactant gas pulses. The device is mounted in ultrahigh vacuum and combined with a low-temperature scanning tunneling microscope and a source for the deposition of mass-selected clusters. This combination allows for a direct correlation between surface morphology and catalytic properties of model catalysts. The performances of the new detector are illustrated by measurements on two model systems. Thermal desorption spectroscopy of CO carried out on morphologically well characterized Pt on TiO2(110)-(1×1) reveals several desorption features, which can be attributed to different surface sites. Catalytic CO oxidation performed by alternatingly pulsing isotopic CO and O2 on a Pt film on yttria stabilized zirconia reveals the CO or O rich temperature regimes. The CO2 production rate correlated with either one of the reactants can perfectly be reproduced by a kinetic reaction model giving access to the respective adsorption energies

    The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer

    Full text link
    The external electric field deforms flaccid phospholipid vesicles into spheroidal bodies, with the rotational axis aligned with its direction. Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the deformation is typically prolate, while increasing the frequency to the 10 kHz range changes the deformation to oblate. We attempt to explain this behaviour with a theoretical model, based on the minimization of the total free energy of the vesicle. The energy terms taken into account include the membrane bending energy and the energy of the electric field. The latter is calculated from the electric field via the Maxwell stress tensor, where the membrane is modelled as anisotropic lossy dielectric. Vesicle deformation in response to varying frequency is calculated numerically. Using a series expansion, we also derive a simplified expression for the deformation, which retains the frequency dependence of the exact expression and may provide a better substitute for the series expansion used by Winterhalter and Helfrich, which was found to be valid only in the limit of low frequencies. The model with the anisotropic membrane permittivity imposes two constraints on the values of material constants: tangential component of dielectric permittivity tensor of the phospholipid membrane must exceed its radial component by approximately a factor of 3; and the membrane conductivity has to be relatively high, approximately one tenth of the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens. Matte
    corecore