201 research outputs found

    The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner

    Full text link
    In Escherichia coli , DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA - dsbC - mutants have a number of phenotypes not exhibited by either dsbA - , dsbC - or dsbA - dsbD - mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage φ80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb - strains. dsbA - dsbC - mutants exhibit unique changes at the protein level that are not exhibited by dsbA - dsbD - mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/1/MMI_6030_sm_Tables_S1-S4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/2/MMI_tables_s1-s4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/3/j.1365-2958.2007.06030.x.pd

    Enzyme‐assisted aqueous extraction of Kalahari melon seed oil: optimization using response surface methodology

    Get PDF
    Enzymatic extraction of oil from Kalahari melon seeds was investigated and evaluated by response surface methodology (RSM). Two commercial protease enzyme products were used separately: Neutrase® 0.8 L and Flavourzyme® 1000 L from Novozymes (Bagsvaerd, Denmark). RSM was applied to model and optimize the reaction conditions namely concentration of enzyme (20–50 g kg−1 of seed mass), initial pH of mixture (pH 5–9), incubation temperature (40–60 °C), and incubation time (12–36 h). Well fitting models were successfully established for both enzymes: Neutrase 0.8 L (R 2 = 0.9410) and Flavourzyme 1000 L (R 2 = 0.9574) through multiple linear regressions with backward elimination. Incubation time was the most significant reaction factor on oil yield for both enzymes. The optimal conditions for Neutrase 0.8 L were: an enzyme concentration of 25 g kg−1, an initial pH of 7, a temperature at 58 °C and an incubation time of 31 h with constant shaking at 100 rpm. Centrifuging the mixture at 8,000g for 20 min separated the oil with a recovery of 68.58 ± 3.39%. The optimal conditions for Flavourzyme 1000 L were enzyme concentration of 21 g kg−1, initial pH of 6, temperature at 50 °C and incubation time of 36 h. These optimum conditions yielded a 71.55 ± 1.28% oil recovery

    Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables

    Get PDF
    It is known that in developing countries, a large quantity of fruit and vegetable losses results at postharvest and processing stages due to poor or scarce storage technology and mishandling during harvest. The use of new and innovative technologies for reducing postharvest losses is a requirement that has not been fully covered. The use of edible coatings (mainly based on biopolymers) as a postharvest technique for agricultural commodities has offered biodegradable alternatives in order to solve problems (e.g., microbiological growth) during produce storage. However, biopolymer-based coatings can present some disadvantages such as: poor mechanical properties (e.g., lipids) or poor water vapor barrier properties (e.g., polysaccharides), thus requiring the development of new alternatives to solve these drawbacks. Recently, nanotechnology has emerged as a promising tool in the food processing industry, providing new insights about postharvest technologies on produce storage. Nanotechnological approaches can contribute through the design of functional packing materials with lower amounts of bioactive ingredients, better gas and mechanical properties and with reduced impact on the sensorial qualities of the fruits and vegetables. This work reviews some of the main factors involved in postharvest losses and new technologies for extension of postharvest storage of fruits and vegetables, focused on perspective uses of edible coatings and nano-laminate coatings.María L. Flores-López thanks Mexican Science and Technology Council (CONACYT, Mexico) for PhD fellowship support (CONACYT Grant Number: 215499/310847). Miguel A. Cerqueira (SFRH/BPD/72753/2010) is recipient of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). The authors also thank the FCT Strategic Project of UID/ BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the project ‘‘BioInd Biotechnology and Bioengineering for improved Industrial and AgroFood processes,’’ REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico – FUNCAP, CE Brazil (CI10080-00055.01.00/13)
    corecore