2,256 research outputs found
Baryogenesis from Dark Sector
We propose a novel mechanism to generate a suitable baryon asymmetry from
dark (hidden) sector. This is a Baryogenesis through a reverse pathway of the
"asymmetric dark matter" scenario. In the mechanism, the asymmetry of dark
matter is generated at first, and it is partially transferred into a baryon
asymmetry in the standard model sector. This mechanism enables us not only to
realize the generation of the baryon asymmetry but also to account for the
correct amount of dark matter density in the present universe within a simple
framework.Comment: 7 page
Quantization of the scalar field in a static quantum metric
We investigate the Hamiltonian formulation of quantum scalar fields in a
static quantum metric. We derive a functional integral formula for the
propagator. We show that the quantum metric substantially changes the behaviour
of the scalar propagator and the effective Yukawa potential.Comment: Latex, 12 page
Multi-Higgs Mass Spectrum in Gauge-Higgs Unification
We study an SU(2) supersymmetric gauge model in a framework of gauge-Higgs
unification. Multi-Higgs spectrum appears in the model at low energy. We
develop a useful perturbative approximation scheme for evaluating effective
potential to study the multi-Higgs mass spectrum. We find that both
tree-massless and massive Higgs scalars obtain mass corrections of similar size
from finite parts of the loop effects. The corrections modify multi-Higgs mass
spectrum, and hence, the loop effects are significant in view of future
verifications of the gauge-Higgs unification scenario in high-energy
experiments.Comment: 32 pages; typos corrected and a few comments added, published versio
Scale invariant Euclidean field theory in any dimension
We discuss D-dimensional scalar field interacting with a scale invariant
random metric which is either a Gaussian field or a square of a Gaussian field.
The metric depends on d-dimensional coordinates (where d is less than D). By a
projection to a lower dimensional subspace we obtain a scale invariant
non-Gaussian model of Euclidean quantum field theory in D-d or d dimensions.Comment: Latex, 16 page
Green functions and dimensional reduction of quantum fields on product manifolds
We discuss Euclidean Green functions on product manifolds P=NxM. We show that
if M is compact then the Euclidean field on P can be approximated by its zero
mode which is a Euclidean field on N. We estimate the remainder of this
approximation. We show that for large distances on N the remainder is small. If
P=R^{D-1}xS^{beta}, where S^{beta} is a circle of radius beta, then the result
reduces to the well-known approximation of the D dimensional finite temperature
quantum field theory to D-1 dimensional one in the high temperature limit.
Analytic continuation of Euclidean fields is discussed briefly.Comment: 17 page
Gauge-Higgs Unification and Quark-Lepton Phenomenology in the Warped Spacetime
In the dynamical gauge-Higgs unification of electroweak interactions in the
Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range
120 GeV -- 290 GeV, provided that the spacetime structure is determined at the
Planck scale. Couplings of quarks and leptons to gauge bosons and their
Kaluza-Klein (KK) excited states are determined by the masses of quarks and
leptons. All quarks and leptons other than top quarks have very small couplings
to the KK excited states of gauge bosons. The universality of weak interactions
is slightly broken by magnitudes of , and for
-, - and -, respectively. Yukawa couplings become
substantially smaller than those in the standard model, by a factor |\cos
\onehalf \theta_W| where is the non-Abelian Aharonov-Bohm phase
(the Wilson line phase) associated with dynamical electroweak symmetry
breaking.Comment: 34 pages, 7 eps files, comments and a reference adde
Anarchy and Hierarchy
We advocate a new approach to study models of fermion masses and mixings,
namely anarchy proposed in hep-ph/9911341. In this approach, we scan the O(1)
coefficients randomly. We argue that this is the correct approach when the
fundamental theory is sufficiently complicated. Assuming there is no physical
distinction among three generations of neutrinos, the probability distributions
in MNS mixing angles can be predicted independent of the choice of the measure.
This is because the mixing angles are distributed according to the Haar measure
of the Lie groups whose elements diagonalize the mass matrices. The
near-maximal mixings, as observed in the atmospheric neutrino data and as
required in the LMA solution to the solar neutrino problem, are highly
probable. A small hierarchy between the Delta m^2 for the atmospheric and the
solar neutrinos is obtained very easily; the complex seesaw case gives a
hierarchy of a factor of 20 as the most probable one, even though this
conclusion is more measure-dependent. U_{e3} has to be just below the current
limit from the CHOOZ experiment. The CP-violating parameter sin delta is
preferred to be maximal. We present a simple SU(5)-like extension of anarchy to
the charged-lepton and quark sectors which works well phenomenologically.Comment: 26 page
Decoherence in QED at finite temperature
We consider a wave packet of a charged particle passing through a cavity
filled with photons at temperature T and investigate its localization and
interference properties. It is shown that the wave packet becomes localized and
the interference disappears with an exponential speed after a sufficiently long
path through the cavity.Comment: Latex, 10 page
- âŠ