47,856 research outputs found

    Quadrature domains and kernel function zipping

    Full text link
    It is proved that quadrature domains are ubiquitous in a very strong sense in the realm of smoothly bounded multiply connected domains in the plane. In fact, they are so dense that one might as well assume that any given smooth domain one is dealing with is a quadrature domain, and this allows access to a host of strong conditions on the classical kernel functions associated to the domain. Following this string of ideas leads to the discovery that the Bergman kernel can be zipped down to a strikingly small data set. It is also proved that the kernel functions associated to a quadrature domain must be algebraic.Comment: 13 pages, to appear in Arkiv for matemati

    Construction of optimal witness for unknown two-qubit entanglement

    Full text link
    Whether entanglement in a state can be detected, distilled, and quantified without full state reconstruction is a fundamental open problem. We demonstrate a new scheme encompassing these three tasks for arbitrary two-qubit entanglement, by constructing the optimal entanglement witness for polarization-entangled mixed-state photon pairs without full state reconstruction. With better efficiency than quantum state tomography, the entanglement is maximally distilled by newly developed tunable polarization filters, and quantified by the expectation value of the witness, which equals the concurrence. This scheme is extendible to multiqubit Greenberger-Horne-Zeilinger entanglement.Comment: Phys. Rev. Lett. 105, 230404 (2010); supplementary information (OWitness_sup.pdf) is included in source zip fil

    Super-activation of quantum non-locality

    Get PDF
    In this paper we show that quantum non-locality can be super-activated. That is, one can obtain violations of Bell inequalities by tensorizing a local state with itself. Moreover, previous results suggest that such Bell violations can be very large.Comment: v2: Refs added. Same results, v3: Minor corrections. Close to the published versio

    Faithful test of non-local realism with entangled coherent states

    Full text link
    We investigate the violation of Leggett's inequality for non-local realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the non-local realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.Comment: 8 pages, 6 figures, to be published in Phys. Rev.

    Causal Quantum Theory and the Collapse Locality Loophole

    Full text link
    Causal quantum theory is an umbrella term for ordinary quantum theory modified by two hypotheses: state vector reduction is a well-defined process, and strict local causality applies. The first of these holds in some versions of Copenhagen quantum theory and need not necessarily imply practically testable deviations from ordinary quantum theory. The second implies that measurement events which are spacelike separated have no non-local correlations. To test this prediction, which sharply differs from standard quantum theory, requires a precise theory of state vector reduction. Formally speaking, any precise version of causal quantum theory defines a local hidden variable theory. However, causal quantum theory is most naturally seen as a variant of standard quantum theory. For that reason it seems a more serious rival to standard quantum theory than local hidden variable models relying on the locality or detector efficiency loopholes. Some plausible versions of causal quantum theory are not refuted by any Bell experiments to date, nor is it obvious that they are inconsistent with other experiments. They evade refutation via a neglected loophole in Bell experiments -- the {\it collapse locality loophole} -- which exists because of the possible time lag between a particle entering a measuring device and a collapse taking place. Fairly definitive tests of causal versus standard quantum theory could be made by observing entangled particles separated by 0.1\approx 0.1 light seconds.Comment: Discussion expanded; typos corrected; references adde

    Bell's Jump Process in Discrete Time

    Get PDF
    The jump process introduced by J. S. Bell in 1986, for defining a quantum field theory without observers, presupposes that space is discrete whereas time is continuous. In this letter, our interest is to find an analogous process in discrete time. We argue that a genuine analog does not exist, but provide examples of processes in discrete time that could be used as a replacement.Comment: 7 pages LaTeX, no figure

    No Signalling and Quantum Key Distribution

    Full text link
    Standard quantum key distribution protocols are provably secure against eavesdropping attacks, if quantum theory is correct. It is theoretically interesting to know if we need to assume the validity of quantum theory to prove the security of quantum key distribution, or whether its security can be based on other physical principles. The question would also be of practical interest if quantum mechanics were ever to fail in some regime, because a scientifically and technologically advanced eavesdropper could perhaps use post-quantum physics to extract information from quantum communications without necessarily causing the quantum state disturbances on which existing security proofs rely. Here we describe a key distribution scheme provably secure against general attacks by a post-quantum eavesdropper who is limited only by the impossibility of superluminal signalling. The security of the scheme stems from violation of a Bell inequality.Comment: Clarifications and minor revisions in response to comments. Final version; to appear in Phys. Rev. Let

    Causality and Cirel'son bounds

    Get PDF
    An EPR-Bell type experiment carried out on an entangled quantum system can produce correlations stronger than allowed by local realistic theories. However there are correlations that are no-signaling and are more non local than the quantum correlations. Here we show that any correlations more non local than those achievable in an EPR-Bell type experiment necessarily allow -in the context of the quantum formalism- both for signaling and for generation of entanglement. We use our approach to rederive Cirel'son bound for the CHSH expression, and we derive a new Cirel'son type bound for qutrits. We discuss in detail the interpretation of our approach.Comment: 5 page

    Testing non-local realism with entangled coherent states

    Full text link
    We investigate the violation of non-local realism using entangled coherent states (ECS) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility ones and thoroughly assess the effects of detection inefficiency.Comment: 7 pages, 6 figures, RevTeX4, accepted for publication in Phys. Rev.

    Two-Photon Beatings Using Biphotons Generated from a Two-Level System

    Full text link
    We propose a two-photon beating experiment based upon biphotons generated from a resonant pumping two-level system operating in a backward geometry. On the one hand, the linear optical-response leads biphotons produced from two sidebands in the Mollow triplet to propagate with tunable refractive indices, while the central-component propagates with unity refractive index. The relative phase difference due to different refractive indices is analogous to the pathway-length difference between long-long and short-short in the original Franson interferometer. By subtracting the linear Rayleigh scattering of the pump, the visibility in the center part of the two-photon beating interference can be ideally manipulated among [0, 100%] by varying the pump power, the material length, and the atomic density, which indicates a Bell-type inequality violation. On the other hand, the proposed experiment may be an interesting way of probing the quantum nature of the detection process. The interference will disappear when the separation of the Mollow peaks approaches the fundamental timescales for photon absorption in the detector.Comment: to appear in Phys. Rev. A (2008
    corecore