2,343 research outputs found
Proposal for a Topological Plasmon Spin Rectifier
We propose a device in which the spin-polarized AC plasmon mode in the
surface state of a topological insulator nanostructure induces a static spin
accumulation in a resonant, normal metal structure coupled to it. Using a
finite-difference time-domain model, we simulate this spin-pump mechanism with
drift, diffusion, relaxation, and precession in a magnetic field. This
optically-driven system can serve as a DC "spin battery" for spintronic
devices.Comment: Eq. 1 corrected; Figs 3 and 4 update
Restorative Justice-Informed Moral Acquaintance: Resolving the Dual Role Problem in Correctional and Forensic Practice
The issue of dual roles within forensic and correctional fields has typically been conceptualized as dissonance—experienced by practitioners— when attempting to adhere to the conflicting ethical requirements associated with client well-being and community protection. In this paper, we argue that the dual role problem should be conceptualized more broadly; to incorporate the relationship between the offender and their victim. We also propose that Restorative Justice (RJ) is able to provide a preliminary ethical framework to deal with this common ethical oversight. Furthermore, we unite the RJ framework with that of Ward’s (2013) moral acquaintance model to provide a more powerful approach—RJ informed moral acquaintance—aimed at addressing the ethical challenges faced by practitioners within forensic and correctional roles
Suppression of Kondo effect in a quantum dot by external irradiation
We demonstrate that the external irradiation brings decoherence in the spin
states of the quantum dot. This effect cuts off the Kondo anomaly in
conductance even at zero temperature. We evaluate the dependence of the DC
conductance in the Kondo regime on the power of irradiation, this dependence
being determined by the decoherence.Comment: 4 pages, 1 figur
Nonequilibrium Transport through a Kondo Dot in a Magnetic Field: Perturbation Theory
Using nonequilibrium perturbation theory, we investigate the nonlinear
transport through a quantum dot in the Kondo regime in the presence of a
magnetic field. We calculate the leading logarithmic corrections to the local
magnetization and the differential conductance, which are characteristic of the
Kondo effect out of equilibrium. By solving a quantum Boltzmann equation, we
determine the nonequilibrium magnetization on the dot and show that the
application of both a finite bias voltage and a magnetic field induces a novel
structure of logarithmic corrections not present in equilibrium. These
corrections lead to more pronounced features in the conductance, and their form
calls for a modification of the perturbative renormalization group.Comment: 16 pages, 7 figure
The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group
While the properties of the Kondo model in equilibrium are very well
understood, much less is known for Kondo systems out of equilibrium. We study
the properties of a quantum dot in the Kondo regime, when a large bias voltage
V and/or a large magnetic field B is applied. Using the perturbative
renormalization group generalized to stationary nonequilibrium situations, we
calculate renormalized couplings, keeping their important energy dependence. We
show that in a magnetic field the spin occupation of the quantum dot is
non-thermal, being controlled by V and B in a complex way to be calculated by
solving a quantum Boltzmann equation. We find that the well-known suppression
of the Kondo effect at finite V>>T_K (Kondo temperature) is caused by inelastic
dephasing processes induced by the current through the dot. We calculate the
corresponding decoherence rate, which serves to cut off the RG flow usually
well inside the perturbative regime (with possible exceptions). As a
consequence, the differential conductance, the local magnetization, the spin
relaxation rates and the local spectral function may be calculated for large
V,B >> T_K in a controlled way.Comment: 9 pages, invited paper for a special edition of JPSJ "Kondo Effect --
40 Years after the Discovery", some typos correcte
Nonlinear Response of a Kondo system: Direct and Alternating Tunneling Currents
Non - equilibrium tunneling current of an Anderson impurity system subject to
both constant and alternating electric fields is studied. A time - dependent
Schrieffer - Wolff transformation maps the time - dependent Anderson
Hamiltonian onto a Kondo one. Perturbation expansion in powers of the Kondo
coupling strength is carried out up to third order, yielding a remarkably
simple analytical expression for the tunneling current. It is found that the
zero - bias anomaly is suppressed by an ac - field. Both dc and the first
harmonic are equally enhanced by the Kondo effect, while the higher harmonics
are relatively small. These results are shown to be valid also below the Kondo
temperature.Comment: 7 pages, RevTeX, 3 PS figures attached, the article has been
significantly developed: time - dependent Schrieffer - Wolff transformation
is presented in the full form, the results are applied to the change in the
direct current induced by an alternating field (2 figures are new
Kondo Effect in Electromigrated Gold Break Junctions
We present gate-dependent transport measurements of Kondo impurities in bare
gold break junctions, generated with high yield using an electromigration
process that is actively controlled. Thirty percent of measured devices show
zero-bias conductance peaks. Temperature dependence suggests Kondo temperatures
\~7K. The peak splitting in magnetic field is consistent with theoretical
predictions for g=2, though in many devices the splitting is offset from 2guB
by a fixed energy. The Kondo resonances observed here may be due to
atomic-scale metallic grains formed during electromigration.Comment: 5 pages, 3 figure
Calculations of the Knight Shift Anomalies in Heavy Electron Materials
We have studied the Knight shift and magnetic susceptibility
of heavy electron materials, modeled by the infinite U Anderson model
with the NCA method. A systematic study of and for
different Kondo temperatures (which depends on the hybridization width
) shows a low temperature anomaly (nonlinear relation between and
) which increases as the Kondo temperature and distance
increase. We carried out an incoherent lattice sum by adding the of
a few hundred shells of rare earth atoms around a nucleus and compare the
numerically calculated results with the experimental results. For CeSn_3, which
is a concentrated heavy electron material, both the ^{119}Sn NMR Knight shift
and positive muon Knight shift are studied. Also, lattice coherence effects by
conduction electron scattering at every rare earth site are included using the
average-T matrix approximation. Also NMR Knight shifts for YbCuAl and the
proposed quadrupolar Kondo alloy Y_{0.8}U_{0.2}Pd_{3} are studied.Comment: 31 pages of RevTex, 22 Postscript figures, submmitted to PRB, some
figures are delete
Partnership, ownership and control: the impact of corporate governance on employment relations
Prevailing patterns of dispersed share ownership and rules of corporate governance for UK listed companies appear to constrain the ability of managers to make credible, long-term commitments to employees of the kind needed to foster effective labour-management partnerships. We present case study evidence which suggests that such partnerships can nevertheless emerge where product market conditions and the regulatory environment favour a stakeholder orientation. Proactive and mature partnerships may also be sustained where the board takes a strategic approach to mediating between the claims of different stakeholder groups, institutional investors are prepared to take a long-term view of their holdings, and strong and independent trade unions are in a position to facilitate organisational change
Observation of band structure and density of states effects in Co-based magnetic tunnel junctions
Utilizing Co/AlO/Co magnetic tunnel junctions (MTJs) with Co
electrodes of different crystalline phases, a clear relationship between
electrode structure and junction transport properties is presented. For
junctions with one fcc(111) textured and one polycrystalline (poly-phase and
poly-directional) Co electrode, a strong asymmetry is observed in the
magnetotransport properties, while when both electrodes are polycrystalline the
magnetotransport is essentially symmetric. These observations are successfully
explained within a model based on ballistic tunneling between the calculated
band structures (DOS) of fcc-Co and hcp-Co.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
- …
