150,074 research outputs found
Multilayer graphene under vertical electric field
We study the effect of vertical electric field (E-field) on the electronic
properties of multilayer graphene. We show that the effective mass, electron
velocity and density-of-state of a bilayer graphene are modified under the
E-field. We also study the transformation of the band structure of multilayer
graphenes. E-field induces finite (zero) bandgap in the even (odd)-layer
ABA-stacking graphene. On the other hand, finite bandgap is induced in all
ABC-stacking graphene. We also identify the optimum E-field to obtain the
maximum bandgap in the multilayer graphenes. Finally we compare our results
with the experimental results of a field-effect-transistor.Comment: 10 pag
On the backward behavior of some dissipative evolution equations
We prove that every solution of a KdV-Burgers-Sivashinsky type equation blows
up in the energy space, backward in time, provided the solution does not belong
to the global attractor. This is a phenomenon contrast to the backward behavior
of the periodic 2D Navier-Stokes equations studied by
Constantin-Foias-Kukavica-Majda [18], but analogous to the backward behavior of
the Kuramoto-Sivashinsky equation discovered by Kukavica-Malcok [50]. Also we
study the backward behavior of solutions to the damped driven nonlinear
Schrodinger equation, the complex Ginzburg-Landau equation, and the
hyperviscous Navier-Stokes equations. In addition, we provide some physical
interpretation of various backward behaviors of several perturbations of the
KdV equation by studying explicit cnoidal wave solutions. Furthermore, we
discuss the connection between the backward behavior and the energy spectra of
the solutions. The study of backward behavior of dissipative evolution
equations is motivated by the investigation of the Bardos-Tartar conjecture
stated in [5].Comment: 34 page
Iterative Detection of Diagonal Block Space Time Trellis Codes, TCM and Reversible Variable Length Codes for Transmission over Rayleigh Fading Channels
Iterative detection of Diagonal Block Space Time Trellis Codes (DBSTTCs), Trellis Coded Modulation (TCM) and Reversible Variable Length Codes (RVLCs) is proposed. With the aid of efficient iterative decoding, the proposed scheme is capable of providing full transmit diversity and a near channel capacity performance. The performance of the proposed scheme was evaluated when communicating over uncorrelated Rayleigh fading channels. Explicitly, significant iteration gains were achieved by the proposed scheme, which was capable of performing within 2~dB from the channel capacity
- …
