16 research outputs found

    Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery

    No full text
    Instillations of therapeutic agents into the urinary bladder have limited efficacy due to drug washout and inadequate attachment to and penetration into the bladder wall. Instilled nanoparticles alone have low stability and high susceptibility to washout, while gel-based systems are difficult to administer and retain. To overcome disadvantages of current technologies, a biodegradable, in situ-gelling liposome-in-gel (LP-Gel) system was developed for instillation into the bladder, composed of nano-sized, fluidizing liposomes incorporated into a "smart" biopolymeric, urine-triggered hydrogel. The liposomes are optimized for their fluidizing composition in order to enhance cellular penetration through the urothelial barrier, while the hydrogel co-delivers the suspended nanocarriers and enhances adhesion on the mucin layer of the urothelium. The composite system thus mimics both the lipid membranes and mucosal layer that comprise the urothelial barrier. LP-Gel showed appreciable cytotoxicity in rat and human bladder cancer cells, and instillation into rat bladder showed enhanced adhesion on the urothelium and increased penetration into the bladder wall. Instillation of paclitaxel-loaded LP-Gel showed drug retention for at least 7 days, substantially higher than free drug (few hours), and with negligible systemic levels. The LP-Gel platform system thus facilitates prolonged drug localization in the bladder, showing potential use in intravesical applications. (C) 2016 Published by Elsevier B.V

    Synergistic locoregional chemoradiotherapy using a composite liposome-in-gel system as an injectable drug depot

    No full text
    Shruti GuhaSarkar,1 Kamal Pathak,2 Niyati Sudhalkar,3 Prachi More,1 Jayant Sastri Goda,3 Vikram Gota,2 Rinti Banerjee1 1Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 2Department of Clinical Pharmacology, 3Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Navi Mumbai, Maharashtra, India Abstract: The use of radiosensitizers in clinical radiotherapy is limited by systemic toxicity. The biopolymeric, biodegradable, injectable liposome-in-gel-paclitaxel (LG-PTX) system was developed for regional delivery of the radiosensitizer paclitaxel (PTX), and its efficacy was evaluated with concurrent fractionated radiation. LG-PTX is composed of nano-sized drug-loaded fluidizing liposomes, which are incorporated into a porous biodegradable gellan hydrogel. This allows enhanced drug permeation while maintaining a localization of the drug depot. LG-PTX had an IC50 of 325±117 nM in B16F10 melanoma cells, and cytotoxicity with concurrent doses of fractionated radiation showed significant increase in apoptotic cells (75%) compared to radiation (39%) or LG-PTX (43%) alone. Peri-tumoral injection in tumor-bearing mice showed PTX localization in the tumor 2 hours after administration, with no drug detected in plasma or other organs. LG-PTX administration with doses of focal radiation (5×3 Gy) significantly reduced tumor volumes compared to control (6.4 times) and radiation alone (1.6 times) and improved animal survival. LG-PTX thus efficiently localizes the drug at the tumor site and synergistically enhances the effect of concurrent radiotherapy. This novel liposome-in-gel system can potentially be used as a platform technology for the delivery of radiosensitizing drugs to enhance the efficacy of chemoradiotherapy. Keywords: radiosensitizer, hydrogel, regional drug delivery, concurrent radiotherapy, lipid nanocarrie

    Synergistic locoregional chemoradiotherapy using a composite liposome-in-gel system as an injectable drug depot

    No full text
    The use of radiosensitizers in clinical radiotherapy is limited by systemic toxicity. The biopolymeric, biodegradable, injectable liposome-in-gel-paclitaxel (LG-PTX) system was developed for regional delivery of the radiosensitizer paclitaxel (PTX), and its efficacy was evaluated with concurrent fractionated radiation. LG-PTX is composed of nano-sized drug-loaded fluidizing liposomes, which are incorporated into a porous biodegradable gellan hydrogel. This allows enhanced drug permeation while maintaining a localization of the drug depot. LG-PTX had an IC50 of 325 +/- 117 nM in B16F10 melanoma cells, and cytotoxicity with concurrent doses of fractionated radiation showed significant increase in apoptotic cells (75%) compared to radiation (39%) or LG-PTX (43%) alone. Peri-tumoral injection in tumor-bearing mice showed PTX localization in the tumor 2 hours after administration, with no drug detected in plasma or other organs. LG-PTX administration with doses of focal radiation (5x3 Gy) significantly reduced tumor volumes compared to control (6.4 times) and radiation alone (1.6 times) and improved animal survival. LG-PTX thus efficiently localizes the drug at the tumor site and synergistically enhances the effect of concurrent radiotherapy. This novel liposome-in-gel system can potentially be used as a platform technology for the delivery of radiosensitizing drugs to enhance the efficacy of chemoradiotherapy

    Bladder irrigation and urothelium disruption: a reminder apropos of a case of fatal fluid absorption

    No full text
    Irrigation or washouts of the bladder are usually performed in various clinical settings. In the 1980s Elliot and colleagues argued that urothelial damage could occur after washouts and irrigations of the bladder. The exact mechanism underlying urothelial damage has not yet been discovered. To our knowledge, this is the first report of fatal fluid overload and pulmonary edema, due to urothelium disruption occurring during bladder irrigation, approached performing complete histological and immunohistochemical investigation on bladder specimens. The exposed case deserves attention since it demonstrates that, although very rarely, irrigation or washouts of the bladder may have unexpected serious clinical consequences

    Knockdown of Ki-67 by dicer-substrate small interfering RNA sensitizes bladder cancer cells to curcumin-induced tumor inhibition.

    Get PDF
    Transitional cell carcinoma (TCC) of the urinary bladder is the most common cancer of the urinary tract. Most of the TCC cases are of the superficial type and are treated with transurethral resection (TUR). However, the recurrence rate is high and the current treatments have the drawback of inducing strong systemic toxicity or cause painful cystitis. Therefore, it would be of therapeutic value to develop novel concepts and identify novel drugs for the treatment of bladder cancer. Ki-67 is a large nucleolar phosphoprotein whose expression is tightly linked to cell proliferation, and curcumin, a phytochemical derived from the rhizome Curcuma longa, has been shown to possess powerful anticancer properties. In this study, we evaluated the combined efficacy of curcumin and a siRNA against Ki-67 mRNA (Ki-67-7) in rat (AY-27) and human (T-24) bladder cancer cells. The anticancer effects were assessed by the determination of cell viability, apoptosis and cell cycle analysis. Ki-67-7 (10 nM) and curcumin (10 µM), when treated independently, were moderately effective. However, in their combined presence, proliferation of bladder cancer cells was profoundly (>85%) inhibited; the rate of apoptosis in the combined presence of curcumin and Ki-67-7 (36%) was greater than that due to Ki-67-7 (14%) or curcumin (13%) alone. A similar synergy between curcumin and Ki-67-7 in inducing cell cycle arrest was also observed. Western blot analysis suggested that pretreatment with Ki-67-7 sensitized bladder cancer cells to curcumin-mediated apoptosis and cell cycle arrest by p53- and p21-independent mechanisms. These data suggest that a combination of anti-Ki-67 siRNA and curcumin could be a viable treatment against the proliferation of bladder cancer cells

    An ex Vivo

    No full text
    Transurothelial drug delivery continues to be an attractive treatment option for a range of urological conditions; however, dosing regimens remain largely empirical. Recently, intravesical delivery of the nonsteroidal anti-inflammatory ketorolac has been shown to significantly reduce ureteral stent-related pain. While this latest development provides an opportunity for advancing the management of stent-related pain, clinical translation will undoubtedly require an understanding of the rate and extent of delivery of ketorolac into the bladder wall. Using an ex vivo porcine model, we evaluate the urothelial permeability and bladder wall distribution of ketorolac. The subsequent application of a pharmacokinetic (PK) model enables prediction of concentrations achieved in vivo. Ketorolac was applied to the urothelium and a transurothelial permeability coefficient (Kp) calculated. Relative drug distribution into the bladder wall after 90 min was determined. Ketorolac was able to permeate the urothelium (Kp = 2.63 × 10–6 cm s–1), and after 90 min average concentrations of 400, 141 and 21 μg g–1 were achieved in the urothelium, lamina propria and detrusor respectively. An average concentration of 87 μg g–1 was achieved across the whole bladder wall. PK simulations (STELLA) were then carried out, using ex vivo values for Kp and muscle/saline partition coefficient (providing an estimation of vascular clearance), to predict 90 min in vivo ketorolac tissue concentrations. When dilution of the drug solution with urine and vascular clearance were taken into account, a reduced ketorolac concentration of 37 μg g–1 across the whole bladder wall was predicted. These studies reveal crucial information about the urothelium’s permeability to agents such as ketorolac and the concentrations achievable in the bladder wall. It would appear that levels of ketorolac delivered to the bladder wall intravesically would be sufficient to provide an anti-inflammatory effect. The combination of such ex vivo data and PK modeling provides an insight into the likelihood of achieving clinically relevant concentrations of drug following intravesical administration
    corecore