1,846 research outputs found

    Competition between Spiral-Defect Chaos and Rolls in Rayleigh-Benard Convection

    Full text link
    We present experimental results for pattern formation in Rayleigh-Benard convection of a fluid with a Prandtl number, Pr~ 4. We find that the spiral-defect-chaos (SDC) attractor which exists for Pr~1 has become unstable. Gradually increasing the temperature difference from below to well above its critical value no longer leads to SDC. A sudden jump of temperature difference from below to above onset causes convection to grow from thermal fluctuations and does yield SDC. However, the SDC is a transient; it coarsens and forms a single cell-filling spiral which then drifts toward the cell wall and disappears.Comment: 9 pages(RevTeX), 5 jpg figures, To appear as Rapid Communication in PR

    Heat transport in turbulent Rayleigh-Benard convection: Effect of finite top- and bottom-plate conductivity

    Full text link
    We describe three apparatus, known as the large, medium, and small apparatus, used for high-precision measurements of the Nusselt number N as a function of the Rayleigh number R for cylindrical samples of fluid and present results illustrating the influence of the finite conductivity of the top and bottom plates on the heat transport in the fluid. We used water samples at a mean temperature of 40 degrees C (Prandtl number sigma = 4.4). The samples in the large apparatus had a diameter D of 49.69 cm and heights L = 116.33, 74.42, 50.61, and 16.52 cm. For the medium apparatus we had D = 24.81 cm, and L = 90.20 and 24.76 cm. The small apparatus contained a sample with D = 9.21 cm, and L = 9.52 cm. For each aspect ratio Gamma = D/L the data covered a range of a little over a decade of R. The maximum R = 10^12 with Nusselt numbers N = 600 was reached for Gamma = 0.43. Measurements were made with both Aluminum and Copper top and bottom plates of nominally identical size and shape. For the large and medium apparatus the results with Aluminum plates fall below those obtained with Copper plates, thus confirming qualitatively the prediction by Verzicco that plates of finite conductivity diminish the heat transport in the fluid. The Nusselt number N_infinity for plates with infinite conductivity was estimated by fitting simultaneously Aluminum- and Copper-plate data sets to an effective powerlaw for N_infinity multiplied by a correction factor f(X) = 1 - exp[-(aX)^b] that depends on the ratio X of the thermal resistance of the fluid to that of the plates as suggested by Verzicco. Within their uncertainties the parameters a and b were independent of Gamma for the large apparatus and showed a small Gamma-dependence for the medium apparatus. The correction was larger for the large, smaller for the medium, and negligible for the small apparatus.Comment: 35 pages, 11 figures. Under consideration for publication in Phys. of Fluid

    TAE Studies in ASDEX Upgrade

    Get PDF

    Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\'enard convection

    Get PDF
    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects rotating Rayleigh-B\'enard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly-stationary nearly-radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency f∼ϵμf\sim\epsilon^\mu with μ≃1\mu\simeq1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, μ\mu and the domain size closely agreed with experiment.Comment: 8 pages, 11 figure

    Introduction

    Full text link

    Wave-number Selection by Target Patterns and Side Walls in Rayleigh-Benard Convection

    Full text link
    We present experimental results for Rayleigh-Benard convection patterns in a cylindrical container with static side-wall forcing induced by a heater. This forcing stabilized a pattern of concentric rolls (a target pattern) with the central roll (the umbilicus) at the center of the cell after a jump from the conduction to the convection state. A quasi-static increase of the control parameter (epsilon) beyond 0.8 caused the umbilicus of the pattern to move off center. As observed by others, a further quasi-static increase of epsilon up to 15.6 caused a sequence of transitions. Each transition began with the displacement of the umbilicus and then proceeded with the loss of one convection roll at the umbilicus and the return of the umbilicus to a location near the center of the cell. Alternatively, with decreasing epsilon new rolls formed at the umbilicus but large umbilicus displacements did not occur. In addition to quantitative measurements of the umbilicus displacement, we determined and analyzed the entire wave-director field of each image. The wave numbers varied in the axial direction, with minima at the umbilicus and at the cell wall and a maximum at a radial position close to 2/3 Gamma. The wave numbers at the maximum showed hysteretic jumps at the transitions, but on average agreed well with the theoretical predictions for the wave numbers selected in the far field of an infinitely extended target pattern.Comment: ReVTeX, 11 pages, 16 eps figures include

    Confinement of the Sun's interior magnetic field: some exact boundary-layer solutions

    Full text link
    High-latitude laminar confinement of the Sun's interior magnetic field is shown to be possible, as originally proposed by Gough and McIntyre (1998) but contrary to a recent claim by Brun and Zahn (A&A 2006). Mean downwelling as weak as 2x10^-6cm/s -- gyroscopically pumped by turbulent stresses in the overlying convection zone and/or tachocline -- can hold the field in advective-diffusive balance within a confinement layer of thickness scale ~ 1.5Mm ~ 0.002 x (solar radius) while transmitting a retrograde torque to the Ferraro-constrained interior. The confinement layer sits at the base of the high-latitude tachocline, near the top of the radiative envelope and just above the `tachopause' marking the top of the helium settling layer. A family of exact, laminar, frictionless, axisymmetric confinement-layer solutions is obtained for uniform downwelling in the limit of strong rotation and stratification. A scale analysis shows that the flow is dynamically stable and the assumption of laminar flow realistic. The solution remains valid for downwelling values of the order of 10^-5cm/s but not much larger. This suggests that the confinement layer may be unable to accept a much larger mass throughput. Such a restriction would imply an upper limit on possible internal field strengths, perhaps of the order of hundreds of gauss, and would have implications also for ventilation and lithium burning. The solutions have interesting chirality properties not mentioned in the paper owing to space restrictions, but described at http://www.atmos-dynamics.damtp.cam.ac.uk/people/mem/papers/SQBO/solarfigure.htmlComment: 6 pages, 3 figures, to appear in conference proceedings: Unsolved Problems in Stellar Physic
    • …
    corecore