36 research outputs found
Ab initio study of a mechanically gated molecule: From weak to strong correlation
The electronic spectrum of a chemically contacted molecule in the junction of
a scanning tunneling microscope can be modified by tip retraction. We analyze
this effect by a combination of density functional, many-body perturbation and
numerical renormalization group theory, taking into account both the
non-locality and the dynamics of electronic correlation. Our findings, in
particular the evolution from a broad quasiparticle resonance below to a narrow
Kondo resonance at the Fermi energy, correspond to the experimental
observations.Comment: 4 pages, 3 figure
Electrical transport through a mechanically gated molecular wire
A surface-adsorbed molecule is contacted with the tip of a scanning tunneling
microscope (STM) at a pre-defined atom. On tip retraction, the molecule is
peeled off the surface. During this experiment, a two-dimensional differential
conductance map is measured on the plane spanned by the bias voltage and the
tip-surface distance. The conductance map demonstrates that tip retraction
leads to mechanical gating of the molecular wire in the STM junction. The
experiments are compared with a detailed ab initio simulation. We find that
density functional theory (DFT) in the local density approximation (LDA)
describes the tip-molecule contact formation and the geometry of the molecular
junction throughout the peeling process with predictive power. However, a
DFT-LDA-based transport simulation following the non-equilibrium Green's
functions (NEGF) formalism fails to describe the behavior of the differential
conductance as found in experiment. Further analysis reveals that this failure
is due to the mean-field description of electron correlation in the local
density approximation. The results presented here are expected to be of general
validity and show that, for a wide range of common wire configurations,
simulations which go beyond the mean-field level are required to accurately
describe current conduction through molecules. Finally, the results of the
present study illustrate that well-controlled experiments and concurrent ab
initio transport simulations that systematically sample a large configuration
space of molecule-electrode couplings allow the unambiguous identification of
correlation signatures in experiment.Comment: 31 pages, 10 figure
Dynamical bi-stability of single-molecule junctions: A combined experimental/theoretical study of PTCDA on Ag(111)
The dynamics of a molecular junction consisting of a PTCDA molecule between
the tip of a scanning tunneling microscope and a Ag(111) surface have been
investigated experimentally and theoretically. Repeated switching of a PTCDA
molecule between two conductance states is studied by low-temperature scanning
tunneling microscopy for the first time, and is found to be dependent on the
tip-substrate distance and the applied bias. Using a minimal model Hamiltonian
approach combined with density-functional calculations, the switching is shown
to be related to the scattering of electrons tunneling through the junction,
which progressively excite the relevant chemical bond. Depending on the
direction in which the molecule switches, different molecular orbitals are
shown to dominate the transport and thus the vibrational heating process. This
in turn can dramatically affect the switching rate, leading to non-monotonic
behavior with respect to bias under certain conditions. In this work, rather
than simply assuming a constant density of states as in previous works, it was
modeled by Lorentzians. This allows for the successful description of this
non-monotonic behavior of the switching rate, thus demonstrating the importance
of modeling the density of states realistically.Comment: 20 pages, 6 figures, 1 tabl
Double Beta Decay: Historical Review of 75 Years of Research
Main achievements during 75 years of research on double beta decay have been
reviewed. The existing experimental data have been presented and the
capabilities of the next-generation detectors have been demonstrated.Comment: 25 pages, typos adde
Theoretical fatigue. Effective notch stresses at spot welds
Notch stress formulae are derived for the application of a notch stress approach to the fatigue assessment of spot welds. A keyhole notch is assumed to describe the edge of the weld spot between the overlapping plates. The stress fields at the keyhole notch under 'singular' and 'non-singular' in-plane loading modes inclusive of the stress concentration factors K-t are derived from the relevant Airy stress functions. The formulae are applied to typical loading cases of spot welds and compared with finite element solutions. Fatigue-effective notch stresses inclusive of fatigue notch factors K-f are calculated by applying the microstructural support hypothesis of Neuber. The notch stresses at the keyhole are also derived for out-of-plane shear loading based on the relevant harmonic stress functions. The multiaxial notch stresses at the weld spot edge are thus completely described
A Unified Elastic-Plastic Model for Fatigue Crack Growth at Notches Including Crack Closure Effects
K - Ein PC-Programm zur Berechnung von Spannungsintensitaetsfaktoren fuer Risse in Kerben
In the frame of linear-elastic fracture mechanics the stress intensity factor K represents the crack opening parameter which characterizes the load at the tip (2D) and along the crack front (3D). K is a complex function of overall stress, crack length, crack geometry, kind of load and form of crack opening. An approximation formula for the determination of K is given and verified by finite element analyses using the FEM program ABAQUS. For calculating K by means of the approximation formula a PC program has been compiled. For comparison, Newman-Raju equations for circular notches are incorporated into the PC program. (WEN)Available from TIB Hannover: RO 1533(1996,2) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
